数字孪生大脑:在生物智能与人工智能间架起桥梁

神经科学与受人脑结构启发的ai技术的一系列最新发展,为我们破解智能之谜开辟了新的可能性。如今,中国科学院自动化研究所蒋田仔教授领导的研究小组,概述了一套名为“数字孪生大脑”的创新平台的关键组件及特性。该平台有望弥合生物智能与人工智能之间的差距,并为两端提供新型解决方案。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

数字孪生大脑:在生物智能与人工智能间架起桥梁

此项研究已于9月22日发表在《智能计算》(Intelligent Computing)期刊之上。

生物智能与人工智能之间的一大共同点,在于二者均属于网络结构。由于大脑由生物网络构成,因此研究人员希望使用人工网络构建起相应的数字模型或大脑“孪生”,借此将关于生物智能的知识输入模型当中。此举的最终目标是“推动通用人工智能发展,促进精准心理医疗”。而且毫无疑问,这一宏大目标的实现离不开全球各学科科学家们的共同努力。

利用数字孪生大脑,研究人员可以通过模拟/调节大脑在不同状态下执行各种认知任务,借此探索人脑的工作机制。例如,他们可以模拟大脑在休息状态下如何正常运作,以及可能受疾病影响而发生哪些问题,或者设计出新的方法以调节大脑活动、引导其摆脱不良状态。

尽管听起来如同科幻小说,但数字孪生大脑确实有着坚实的生物学理论基础。其中整合了三大核心要素:充当结构支架和生物约束机制的大脑图谱,根据生物数据训练、用于模拟大脑功能的多级神经模型,再就是用于评估和更新当前“孪生”副本的一系列应用。

这三大核心要素预计将通过闭环不断发展、相互作用。动态大脑图谱能够改进神经模型,从而生成更加真实的功能模拟效果。以往,由此类模型构成的“孪生”已经在不断扩大的实际应用场景下得到验证,包括疾病生物标志物发现和药物测试等。这些应用将持续提供反馈,由此增强大脑图谱以补全整个运行闭环。

生物大脑具有复杂的结构和动力学体系,因此必须建立起极为精细的大脑图谱,包括不同尺度、多种模式、甚至来自不同物种的图谱,才能掌握数字孪生的构建逻辑。通过全面收集相关图谱,研究人员可以深入探索大脑的各个方面,以及大脑内各不同区域之间的联系和相互作用,最终破解大脑组织的原理之谜。

网易人工智能 网易人工智能

网易数帆多媒体智能生产力平台

网易人工智能 39 查看详情 网易人工智能

而在另一方面,大脑图谱也代表一种约束,即神经模型必须以图谱为依据才能实现“生物学合理性”,这同样带来了技术挑战。

蒋田仔团队认为,脑网络组图谱将成为开发数字孪生大脑的重要组成部分。2016年,中国科学院自动化研究所的研究人员宣布,这份宏观图谱包含246个大脑分区,并着力向着对大脑结构和连接性进行“广泛而细致的绘制”前进。

与此同时,鉴于现有大脑模拟平台往往缺乏解剖学基础,作者认为设计“一套开源、高效、灵活、用户友好且受图集约束的大脑模拟平台”将至关重要。该平台必须足够强大,能够支持多尺度与多模态建模。当然,目前还有许多悬而未决的问题有待解决,例如如何有效将纷繁复杂的生物学知识纺织进数字孪生副本、如何设计出更好的模拟模型,以及如何将数字孪生大脑集成到实际场景当中等。

总而言之,这样的数字孪生大脑代表着神经科学与人工智能的融合。通过集成复杂的大脑图谱、动态神经模型及大量应用程序,这套平台有望彻底改变我们对于生物智能与人工智能的理解。在全球科学家的共同努力下,数字孪生大脑有望推动通用人工智能的发展,彻底改变精准心理医疗,最终帮助我们在透彻把握人类思想、规划智能技术的发展、为脑部疾病寻求变革性治疗方法等方向上铺平道路。

以上就是数字孪生大脑:在生物智能与人工智能间架起桥梁的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/479838.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月8日 10:48:25
下一篇 2025年11月8日 10:49:10

相关推荐

  • html搜索框如何跳转_实现HTML搜索框跳转搜索结果【结果】

    HTML搜索框跳转失败多因表单action或参数错误,可通过五种方法解决:一、百度用form提交至https://www.baidu.com/s?q=关键词;二、Google类似,action为https://www.google.com/search;三、JavaScript拼接必应URL并loc…

    2025年12月23日
    200
  • 从OpenAI API JSON响应中高效提取生成文本内容

    本教程详细指导开发者如何从openai api返回的json格式响应中准确提取生成的文本。通过利用`json.parse()`方法解析响应字符串,并访问`choices[0].text`属性,可以安全、高效地获取核心文本内容,从而避免直接字符串操作的潜在问题,确保api数据处理的健壮性。 OpenA…

    2025年12月23日
    000
  • HTML语义化未来趋势有哪些_HTML语义化在Web发展中的趋势与展望

    HTML语义化正朝着智能、高效、包容发展,深度融合结构化数据与ARIA属性,提升机器理解;2. 组件化趋势推动可复用语义结构普及,Web Components实现自定义语义标签;3. 语义化助力性能优化与可访问性,支持懒加载与内容优先级划分;4. AI工具将自动生成语义化代码并辅助检测,降低实践门槛…

    2025年12月23日
    000
  • HTML数据如何实现数据智能 HTML数据智能分析的技术架构

    实现HTML数据智能分析需构建包含采集、解析、存储、分析与可视化的闭环系统,首先通过爬虫技术获取网页数据并进行清洗标准化,接着利用DOM树分析与NLP技术提取结构化信息,随后将数据存入合适数据库或数据仓库并建立元数据管理机制,进而应用AI模型开展分类、情感分析、趋势预测与知识图谱构建等智能分析,最终…

    2025年12月23日
    000
  • HTML5 section怎么用_HTML5内容分区标签应用场景说明

    在HTML5中,标签用于定义文档中具有明确主题的独立内容区块,需包含标题以体现其结构性与语义性,常用于文章章节、产品模块等场景,区别于无语义的和可独立分发的。 在HTML5中,section 标签用于定义文档中的一个独立内容区块。它不是简单的容器,而是有语义的结构化标签,表示文档中一个主题性的分区,…

    2025年12月23日
    000
  • htm算法 前景如何_分析HTM算法应用前景

    HTM算法在实时异常检测、预测性维护等时序数据场景中具备应用价值,其无需大量标注数据的特性适合工业监控、网络安防等领域;但受限于生态薄弱、性能不及主流模型及工程实现难度,短期内难以成为主流,更可能作为边缘计算或AI系统补充技术,在特定专业领域持续发展。 HTM(Hierarchical Tempor…

    2025年12月23日
    000
  • HTML结构化数据怎么添加_Schema标记添加教程

    Schema标记通过结构化数据帮助搜索引擎理解网页内容,提升搜索结果展示效果,如添加星级评分、价格等富文本信息。使用JSON-LD或Microdata格式将符合Schema.org标准的类型(如Article、Product)嵌入HTML中,可增强SEO,需通过Google Rich Results…

    2025年12月22日
    000
  • 如何实现自定义提示

    掌握自定义提示需构建迭代工作流,通过明确目标、设定角色、提供上下文、结构化输出、示例引导、迭代优化、负面提示和链式思考,实现AI输出的精准控制与高效协同。 实现自定义提示,核心在于理解与AI模型交互的本质,并将其从“提问”升级为“引导”。它不是简单的抛出问题,而是通过精心设计的语言结构、上下文信息、…

    2025年12月22日
    000
  • JavaScript机器学习与人工智能库应用

    JavaScript在AI领域应用扩展,依托TensorFlow.js实现浏览器内模型推理与训练,利用WebGL加速;ML5.js提供高层接口,简化图像识别、风格迁移等功能调用;Brain.js支持轻量级神经网络开发,适用于前端智能场景如实时检测、自动补全等,虽性能不及Python,但在交互式轻量应…

    2025年12月20日
    100
  • LangChain HNSWLib 向量存储机制与数据持久化指南

    本文详细解析langchain中hnswlib向量存储的工作原理,明确其作为内存存储的特性,指出数据实际存储在项目部署的服务器上,而非langchain官方服务器。同时,文章将指导如何通过save_local()方法将内存中的向量数据持久化到本地文件,确保数据安全与可靠性,并探讨在实际应用中的注意事…

    2025年12月20日
    000
  • 使用LINE Bot与OpenAI API发送文本和贴图的完整教程

    本文详细介绍了如何在LINE Bot中集成OpenAI API生成文本回复,并在此基础上发送LINE贴图。核心挑战在于LINE Messaging API的replyToken通常只能使用一次,导致连续发送文本和贴图时出现400错误。解决方案是利用API支持一次性发送多条消息的特性,将文本和贴图消息…

    2025年12月20日
    000
  • C++工业数字孪生 OPC UA实时数据桥接

    选择合适的OPC UA客户端SDK(如open62541或Unified Automation SDK),安装配置后通过C++代码连接服务器,浏览地址空间并读取指定节点数据,结合订阅机制实现数字孪生的实时数据交换与处理。 将C++应用与OPC UA服务器连接,实现工业数字孪生的实时数据交换。这涉及使…

    2025年12月18日
    000
  • 如何为C++搭建数字孪生可视化环境 Unity3D C++插件开发

    c++++与unity3d结合搭建数字孪生可视化环境的核心在于数据桥接与高效渲染;1. 首先整理c++数据模型并以unity可理解的方式导出,如使用自定义格式、标准格式或创建dll;2. 接着开发unity插件,通过定义接口、实现函数、编译为dll并导入unity项目;3. 创建c#脚本调用插件函数…

    2025年12月18日 好文分享
    000
  • C语言数据结构:数据结构在人工智能中的关键作用

    C 语言数据结构:数据结构在人工智能中的关键作用 概述 在人工智能领域,数据结构对于处理大量数据至关重要。数据结构提供了一种组织和管理数据的有效方法,优化算法和提高程序的效率。 常见的数据结构 立即学习“C语言免费学习笔记(深入)”; C 语言中常用的数据结构包括: 数组:一组连续存储的数据项,具有…

    2025年12月18日
    000
  • C语言算法问答集:将算法应用于人工智能

    搜索算法:二分查找,高效地在数组中查找元素。排序算法:快速排序,将数据序列按特定顺序排列。图形算法:dijkstra 算法,寻找两个节点间最短路径。机器学习算法:线性回归,训练模型对数据进行预测。 C 语言算法问答集:将算法应用于人工智能 前言 算法在人工智能(AI)中扮演着至关重要的角色,可为 A…

    2025年12月18日
    000
  • 人工智能如何提升 C 代码安全性检查

    答案:人工智能(ai)通过数据流分析、启发式检测和代码重构建议等方式提升了 c 代码安全性检查的效率。数据流分析:识别数据流并发现安全漏洞,如缓冲区溢出。启发式检测:学习已知漏洞模式并识别类似模式。代码重构建议:提供将不安全代码转换为安全替代方案的建议。 人工智能提升 C 代码安全性检查 简介C 语…

    2025年12月18日
    000
  • 人工智能支持的 C 代码覆盖率分析

    人工智能支持的 C 代码覆盖率分析 在软件开发中,代码覆盖率分析是一个关键步骤,它可以帮助开发人员识别未执行的代码路径。传统的方法通常涉及编写测试场景并手动检查执行情况。然而,人工智能 (AI) 的出现为自动化和改进代码覆盖率分析过程开辟了新的可能性。 AI 在代码覆盖率分析中的作用 AI 算法可用…

    2025年12月18日
    000
  • 人工智能如何帮助 C 语言代码在嵌入式系统中应用?

    人工智能 (ai) 通过以下方式提升嵌入式 c 语言代码的应用:代码优化:识别高能量耗或计算密集型功能并将其优化。代码生成:使用自然语言处理 (nlp) 从规格中自动生成代码。测试和验证:自动化测试和验证过程,检测传统方法可能错过的缺陷。 人工智能如何提升嵌入式系统中 C 语言代码的应用 人工智能 …

    2025年12月18日
    000
  • 人工智能如何为 C 语言代码提供安全增强功能?

    人工智能通过提供以下功能来提升 c 代码安全性:静态分析:识别潜在安全漏洞(例如缓冲区溢出);动态分析:监控代码执行并检测异常行为;模糊测试:生成随机输入以测试代码的异常行为;自动化修复:建议修复措施或自动生成补丁程序。 人工智能赋能 C 代码:提升安全性 人工智能 (AI) 在 C 代码安全方面发…

    2025年12月18日
    100
  • 人工智能如何增强 C 语言代码的调试能力?

    问题:如何增强 c 语言代码的调试能力?答案:利用人工智能 (ai) 技术,包括:ai 驱动的代码分析:使用机器学习模型识别潜在问题,例如内存泄漏和空指针引用。ide 集成:将代码分析工具集成到 ide 中,以便在开发环境中直接访问结果。自动异常处理:识别异常并自动采取行动,例如记录错误或中止应用程…

    2025年12月18日
    000

发表回复

登录后才能评论
关注微信