Cortana如何查询股票信息_Cortana股票查询功能用法

可通过自然语言指令、绑定财经账户或创建快捷指令实现Cortana查询股票。首先使用“苹果公司股价是多少”类问句唤醒Cortana获取实时数据;其次在设置中关联Yahoo Finance等服务,添加TSLA等股票至监控列表,启用涨跌提醒;最后通过Power Automate创建“查微软股票”命令,自动跳转Yahoo财经页面,提升查看效率。

cortana如何查询股票信息_cortana股票查询功能用法

如果您希望使用Cortana快速获取股票市场的实时动态,但发现其默认功能无法直接呈现所需数据,可以通过特定指令或间接方式触发查询。以下是实现此操作的步骤:

本文运行环境:Surface Pro 9,Windows 11。

一、使用自然语言指令查询股价

该方法利用Cortana对自然语言的理解能力,直接解析用户输入的股票代码或公司名称,并通过集成的搜索引擎返回结果。此方式无需打开额外应用,适合快速查看。

1、点击任务栏上的搜索图标或按下 Win + S 组合键唤醒Cortana界面。

2、在输入框中键入如“苹果公司股价是多少”或“AAPL 股票价格”等完整问句。

3、按回车后,Cortana会调用必应搜索,在结果页顶部显示来自财经网站的实时股价卡片,包含当前值、涨跌幅及走势图。

二、绑定财经账户获取个性化提醒

通过将Cortana与支持的金融信息服务关联,可实现自定义股票监控和推送通知。此方案适用于需要持续跟踪多个标的的用户。

1、进入系统设置中的“隐私与安全”选项,选择“语音、墨迹书写和键入”下的“在线语音识别”设置。

2、点击“管理Cortana技能”并搜索“投资组合跟踪”相关服务,例如连接Yahoo Finance或MSN Money账户。

蓝心千询 蓝心千询

蓝心千询是vivo推出的一个多功能AI智能助手

蓝心千询 34 查看详情 蓝心千询

3、授权访问后,在Cortana笔记本中设定关注列表,如添加“特斯拉、TSLA”至监视清单。

4、配置每日市场收盘后的摘要推送,或当某只股票波动超过预设阈值时发送通知到锁屏界面。

三、借助快捷指令跳转专业平台

由于Cortana自身不提供深度金融数据分析,可通过创建自定义命令将其重定向至第三方交易平台,提升操作效率。

1、安装Microsoft Power Automate桌面版应用,并登录个人账号。

2、新建一个自动化流程,命名为“查股票”,设置触发条件为“收到文本命令:查 [公司名] 股票”。

3、添加“启动应用”动作,指定目标为浏览器并附带URL参数,格式为:https://finance.yahoo.com/quote/[公司代码]

4、保存并同步至Cortana,在语音或文字输入“查微软股票”时,自动打开Edge浏览器并加载对应行情页面。

以上就是Cortana如何查询股票信息_Cortana股票查询功能用法的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/493325.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月8日 16:42:41
下一篇 2025年11月8日 16:43:51

相关推荐

  • PySpark DataFrame中基于前一个非空值顺序填充缺失数据

    本教程详细介绍了如何在PySpark DataFrame中,利用窗口函数高效地实现基于前一个非空值的顺序填充(Forward Fill)缺失数据。针对具有递增 row_id 和稀疏 group_id 的场景,我们将演示如何通过 Window.orderBy 结合 F.last(ignorenulls…

    2025年12月14日
    000
  • Python 中的模块(Module)和包(Package)管理

    Python的模块和包是代码组织与复用的核心,模块为.py文件,包为含__init__.py的目录,通过import导入,结合虚拟环境(如venv)可解决依赖冲突,实现项目隔离;合理结构(如my_project/下的包、测试、脚本分离)提升可维护性,使用pyproject.toml或setup.py…

    2025年12月14日
    000
  • 解决TensorFlow _pywrap_tf2 DLL加载失败错误

    本文旨在解决TensorFlow中遇到的ImportError: DLL load failed while importing _pywrap_tf2错误,该错误通常由动态链接库初始化失败引起。核心解决方案是通过卸载现有TensorFlow版本并重新安装一个已知的稳定版本(如2.12.0),以确保…

    2025年12月14日
    000
  • 如何用Python解析HTML(BeautifulSoup/lxml)?

    答案是BeautifulSoup和lxml各有优势,适用于不同场景。BeautifulSoup容错性强、API直观,适合处理不规范HTML和快速开发;lxml基于C实现,解析速度快,适合处理大规模数据和高性能需求。两者可结合使用,兼顾易用性与性能。 用Python解析HTML,我们主要依赖像Beau…

    2025年12月14日
    000
  • Python中的lambda函数有什么用途和限制?

    lambda函数与普通函数的主要区别在于:lambda是匿名函数,只能包含单个表达式,自动返回表达式结果,常用于map、filter、sorted等高阶函数中简化代码;而普通函数使用def定义,可包含多条语句和return语句,具有函数名,适用于复杂逻辑。例如,lambda x: xx 实现平方,而…

    2025年12月14日
    000
  • 如何实现 Python 的并发编程?threading 与 multiprocessing

    Python threading和multiprocessing的核心区别在于:threading受GIL限制,无法实现CPU并行,适合I/O密集型任务;multiprocessing创建独立进程,绕开GIL,可利用多核实现真正并行,适合CPU密集型任务。1. threading共享内存、开销小,但…

    2025年12月14日
    000
  • 解决 PyInstaller 命令未识别:PATH 配置与虚拟环境管理指南

    本文旨在解决PyInstaller命令在安装后仍提示“未识别”的问题。核心原因通常是系统PATH环境变量未正确包含PyInstaller可执行文件的路径,尤其是在使用Python虚拟环境时。教程将详细指导如何检查和配置PATH,确保PyInstaller命令的正确执行,从而顺利打包Python应用。…

    2025年12月14日
    000
  • 解决PyInstaller未识别错误:构建Python可执行文件的路径配置指南

    本文旨在解决PyInstaller命令在VSCode或其他终端中无法被识别的问题。核心在于理解并正确配置环境变量PATH,特别是当使用Python虚拟环境时。教程将详细介绍如何激活虚拟环境、验证PyInstaller路径,以及如何在系统层面添加PyInstaller的安装路径,确保用户能顺利使用Py…

    2025年12月14日
    000
  • 如何应对反爬虫策略?IP 代理与用户代理池

    IP代理与用户代理池协同工作可有效应对反爬虫,通过模拟多样化真实用户行为,结合高质量代理管理、请求头一致性、无头浏览器及Cookie会话控制等策略,提升爬虫隐蔽性与稳定性。 应对反爬虫策略,尤其是那些复杂的、动态变化的检测机制,IP代理和用户代理池无疑是构建健壮爬虫系统的两大基石。它们的核心思想是模…

    2025年12月14日
    000
  • 如何用Python实现一个简单的爬虫?

    答案:使用Python实现简单爬虫最直接的方式是结合requests和BeautifulSoup库。首先通过requests发送HTTP请求获取网页HTML内容,并设置headers、超时和编码;然后利用BeautifulSoup解析HTML,通过CSS选择器提取目标数据,如文章标题和链接;为避免被…

    2025年12月14日
    000
  • 优化Matplotlib粒子模拟动画:实现逐帧粒子云显示与MP4导出指南

    本教程旨在指导如何优化基于Matplotlib的粒子模拟动画,实现粒子在每个时间步以离散点(粒子云)的形式动态展示,而非轨迹连线。我们将详细介绍如何调整绘图样式以避免轨迹线,优化动画播放流畅度,并最终将高质量的粒子动画保存为MP4视频文件。 在进行物理模拟时,可视化结果是理解系统行为的关键。然而,默…

    2025年12月14日
    000
  • 解决 PyInstaller “命令未识别” 错误的完整指南

    本文旨在解决使用 PyInstaller 创建可执行文件时遇到的“pyinstaller 命令未识别”错误。我们将深入探讨该错误发生的根本原因,主要围绕系统环境变量 PATH 的配置,并提供详细的解决方案,包括在虚拟环境中激活 PyInstaller以及在系统层面调整 PATH 变量的方法,确保您能…

    2025年12月14日
    000
  • Pandas数据帧中高效筛选N个重复项并保留最后N条记录

    本教程将探讨如何在Pandas数据帧中高效处理重复数据,具体目标是针对指定列的重复组,仅保留每组的最后N条记录。我们将介绍并演示使用groupby().tail()方法的简洁实现,该方法对于在内存中处理中等规模数据集时,能提供比基于行号的窗口函数更直观和高效的解决方案。 问题描述与背景 在数据处理过…

    2025年12月14日
    000
  • Pandas数据处理:高效筛选重复记录并保留指定数量的最新数据

    本教程旨在指导用户如何高效地从数据集中筛选重复记录,并为每个重复组保留指定数量(例如最后N条)的数据。我们将重点介绍Pandas中简洁高效的groupby().tail()方法,并与PySpark中基于窗口函数的方法进行对比,通过详细代码示例和最佳实践,帮助读者优化数据清洗流程。 问题场景描述 在数…

    2025年12月14日
    000
  • 数据帧中高效筛选重复项并保留最新N条记录的教程

    本教程旨在解决数据分析中常见的挑战:如何从Pandas DataFrame中高效地筛选出基于特定列的重复项,并仅保留每组重复项中的最新N条记录。我们将探讨一种简洁且性能优越的方法,即利用groupby().tail()组合操作,并提供详细的代码示例与性能考量,以帮助读者在处理大规模数据集时做出最佳选…

    2025年12月14日
    000
  • 数据帧重复记录筛选:高效保留指定数量的最新数据

    本教程详细探讨如何在数据帧中高效处理重复记录,并仅保留每组重复项中的指定数量(例如,最新的N条)。文章将介绍两种主流的数据处理工具:Pandas的groupby().tail()方法和PySpark的窗口函数。通过具体的代码示例和解释,帮助读者理解并应用这些技术,以优化数据清洗和预处理流程,特别是在…

    2025年12月14日
    000
  • Pandas DataFrame 中高效去除重复项并保留指定数量的最新记录

    本文档旨在介绍如何使用 Pandas DataFrame 有效地过滤掉重复项,并为每个重复组保留指定数量的最新记录。我们将演示如何根据特定列识别重复项,并利用 groupby() 和 tail() 函数实现高效的数据筛选,特别适用于大型数据集。 在数据分析和处理中,经常需要处理包含重复项的数据集。 …

    2025年12月14日
    000
  • Selenium Edge WebDriver 初始化最佳实践与常见错误解析

    本教程详细解析了Selenium中初始化Edge WebDriver时常见的AttributeError问题,指出直接传递驱动路径字符串的旧有方式不再适用。文章介绍了两种现代且推荐的解决方案:一是利用webdriver_manager库实现驱动自动管理,二是利用Selenium 4.6.0及以上版本…

    2025年12月14日
    000
  • 谈谈你对RESTful API的理解并用Flask实现一个简单的GET/POST接口。

    RESTful API是一种以资源为中心、利用HTTP协议实现的轻量级设计风格。它强调URI标识资源、统一接口(GET/POST/PUT/DELETE)、无状态通信、客户端-服务器分离、可缓存性和分层系统,使API更直观、可扩展。与RPC/SOAP不同,RESTful不关注操作方法,而是通过标准HT…

    2025年12月14日
    000
  • 解释一下Python的命名空间和作用域。

    命名空间是Python中名字与对象的映射,作用域是名字可访问的区域,二者共同构成标识符管理机制。Python有内置、全局、局部三类命名空间:内置命名空间在解释器启动时创建,包含内置函数,持续到程序结束;全局命名空间随模块加载而创建,保存模块级变量,生命周期与模块一致;局部命名空间在函数调用时创建,存…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信