本文介绍如何用Paddle 2.0高层API微调RepVGG模型。先导入必要包,构建RepVGG模型及模块,封装模型预设配置,通过paddle.Model配置模型,加载Cifar10数据集,经训练后用model.predict_batch对图片预测,还可借助VisualDL可视化训练数据。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

引入
上一个项目介绍了【如何构建 RepVGG 模型】自从去年底尝试过高层 API 的使用之后,就没怎么使用过这个功能了Paddle 2.0 正式版更新之后,高层 API 功能也更加完善了所以,本次就介绍如何使用高层 API 完成 RepVGG 模型微调
相关项目
Paddle 2.0 图像分类微调的相关项目PaddleClas:复现 Vision Transformer 实现鲜花图像分类任务的微调PaddleHub:十行代码完成图像分类任务的微调PaddleHapi:高层 API 实现 RepVGG 模型微调
开始
废话少说,直接开始
准备
导入必要的包可选择开启静态图模式In [1]
# 导入 Paddleimport paddleimport paddle.nn as nnfrom paddle.static import InputSpecfrom paddle.vision.datasets import Cifar10from paddle.vision.transforms import Resize, CenterCrop, Transpose, Normalize, Compose# 导入其他包import cv2import numpy as npfrom IPython.display import Image# 开启静态图# 也可以直接用动态图进行模型训练paddle.enable_static()
模型组网
常规的继承 paddle.nn.Layer 来进行模型组网更多细节请参考【如何构建 RepVGG 模型】In [2]
# 卷积 + 批归一化class ConvBN(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, groups=1): super(ConvBN, self).__init__() self.conv = nn.Conv2D(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias_attr=False) self.bn = nn.BatchNorm2D(num_features=out_channels) def forward(self, x): y = self.conv(x) y = self.bn(y) return y# RepVGG 模块class RepVGGBlock(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros'): super(RepVGGBlock, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.padding_mode = padding_mode assert kernel_size == 3 assert padding == 1 padding_11 = padding - kernel_size // 2 self.nonlinearity = nn.ReLU() self.rbr_identity = nn.BatchNorm2D( num_features=in_channels) if out_channels == in_channels and stride == 1 else None self.rbr_dense = ConvBN(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups) self.rbr_1x1 = ConvBN(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding_11, groups=groups) def forward(self, inputs): if not self.training: return self.nonlinearity(self.rbr_reparam(inputs)) if self.rbr_identity is None: id_out = 0 else: id_out = self.rbr_identity(inputs) return self.nonlinearity(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out) def eval(self): if not hasattr(self, 'rbr_reparam'): self.rbr_reparam = nn.Conv2D(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups, padding_mode=self.padding_mode) self.training = False kernel, bias = self.get_equivalent_kernel_bias() self.rbr_reparam.weight.set_value(kernel) self.rbr_reparam.bias.set_value(bias) for layer in self.sublayers(): layer.eval() def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense) kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1) kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity) return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid def _pad_1x1_to_3x3_tensor(self, kernel1x1): if kernel1x1 is None: return 0 else: return nn.functional.pad(kernel1x1, [1, 1, 1, 1]) def _fuse_bn_tensor(self, branch): if branch is None: return 0, 0 if isinstance(branch, ConvBN): kernel = branch.conv.weight running_mean = branch.bn._mean running_var = branch.bn._variance gamma = branch.bn.weight beta = branch.bn.bias eps = branch.bn._epsilon else: assert isinstance(branch, nn.BatchNorm2D) if not hasattr(self, 'id_tensor'): input_dim = self.in_channels // self.groups kernel_value = np.zeros( (self.in_channels, input_dim, 3, 3), dtype=np.float32) for i in range(self.in_channels): kernel_value[i, i % input_dim, 1, 1] = 1 self.id_tensor = paddle.to_tensor(kernel_value) kernel = self.id_tensor running_mean = branch._mean running_var = branch._variance gamma = branch.weight beta = branch.bias eps = branch._epsilon std = (running_var + eps).sqrt() t = (gamma / std).reshape((-1, 1, 1, 1)) return kernel * t, beta - running_mean * gamma / std# RepVGG 模型class RepVGG(nn.Layer): def __init__(self, num_blocks, width_multiplier=None, override_groups_map=None, in_channels=3, class_dim=1000): super(RepVGG, self).__init__() assert len(width_multiplier) == 4 self.override_groups_map = override_groups_map or dict() assert 0 not in self.override_groups_map self.in_planes = min(64, int(64 * width_multiplier[0])) self.stage0 = RepVGGBlock( in_channels=in_channels, out_channels=self.in_planes, kernel_size=3, stride=2, padding=1) self.cur_layer_idx = 1 self.stage1 = self._make_stage( int(64 * width_multiplier[0]), num_blocks[0], stride=2) self.stage2 = self._make_stage( int(128 * width_multiplier[1]), num_blocks[1], stride=2) self.stage3 = self._make_stage( int(256 * width_multiplier[2]), num_blocks[2], stride=2) self.stage4 = self._make_stage( int(512 * width_multiplier[3]), num_blocks[3], stride=2) self.gap = nn.AdaptiveAvgPool2D(output_size=1) self.linear = nn.Linear(int(512 * width_multiplier[3]), class_dim) def _make_stage(self, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) blocks = [] for stride in strides: cur_groups = self.override_groups_map.get(self.cur_layer_idx, 1) blocks.append(RepVGGBlock(in_channels=self.in_planes, out_channels=planes, kernel_size=3, stride=stride, padding=1, groups=cur_groups)) self.in_planes = planes self.cur_layer_idx += 1 return nn.Sequential(*blocks) def forward(self, x): out = self.stage0(x) out = self.stage1(out) out = self.stage2(out) out = self.stage3(out) out = self.stage4(out) out = self.gap(out) out = paddle.flatten(out, start_axis=1) out = self.linear(out) return out
模型封装
使用函数形式将模型进行封装,将预设配置固定In [3]
# 模型超参数配置optional_groupwise_layers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26]g2_map = {l: 2 for l in optional_groupwise_layers}g4_map = {l: 4 for l in optional_groupwise_layers}# 各种模型预设配置def RepVGG_A0(**kwargs): return RepVGG(num_blocks=[2, 4, 14, 1], width_multiplier=[0.75, 0.75, 0.75, 2.5], override_groups_map=None, **kwargs)def RepVGG_A1(**kwargs): return RepVGG(num_blocks=[2, 4, 14, 1], width_multiplier=[1, 1, 1, 2.5], override_groups_map=None, **kwargs)def RepVGG_A2(**kwargs): return RepVGG(num_blocks=[2, 4, 14, 1], width_multiplier=[1.5, 1.5, 1.5, 2.75], override_groups_map=None, **kwargs)def RepVGG_B0(**kwargs): return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[1, 1, 1, 2.5], override_groups_map=None, **kwargs)def RepVGG_B1(**kwargs): return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[2, 2, 2, 4], override_groups_map=None, **kwargs)def RepVGG_B1g2(**kwargs): return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[2, 2, 2, 4], override_groups_map=g2_map, **kwargs)def RepVGG_B1g4(**kwargs): return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[2, 2, 2, 4], override_groups_map=g4_map, **kwargs)def RepVGG_B2(**kwargs): return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=None, **kwargs)def RepVGG_B2g2(**kwargs): return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g2_map, **kwargs)def RepVGG_B2g4(**kwargs): return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g4_map, **kwargs)def RepVGG_B3(**kwargs): return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[3, 3, 3, 5], override_groups_map=None, **kwargs)def RepVGG_B3g2(**kwargs): return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[3, 3, 3, 5], override_groups_map=g2_map, **kwargs)def RepVGG_B3g4(**kwargs): return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[3, 3, 3, 5], override_groups_map=g4_map, **kwargs)
模型配置
高层 API 通过 paddle.Model 类来配置模型In [4]
# 设置模型的输入和标签images = InputSpec(shape=[-1, 3, 32, 32], dtype='float32', name='images')labels = InputSpec(shape=[-1], dtype='int64', name='labels')# 初始化模型model = paddle.Model(RepVGG_A0(in_channels=3, class_dim=10), inputs=images, labels=labels)# 加载预训练模型参数model.load(path='data/data69662/RepVGG_A0', skip_mismatch=True, reset_optimizer=True)# 打印模型结构model.summary()# 配置优化器opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())# 配置模型model.prepare(optimizer=opt, loss=nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy(topk=(1, 5)))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/hapi/model.py:1206: UserWarning: Skip loading for linear.weight. linear.weight receives a shape [1280, 1000], but the expected shape is [1280, 10]. ("Skip loading for {}. ".format(key) + str(err)))/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/hapi/model.py:1206: UserWarning: Skip loading for linear.bias. linear.bias receives a shape [1000], but the expected shape is [10]. ("Skip loading for {}. ".format(key) + str(err)))/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/hapi/model_summary.py:107: UserWarning: Your model was created in static mode, this may not get correct summary information! "Your model was created in static mode, this may not get correct summary information!"/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:636: UserWarning: When training, we now always track global mean and variance. "When training, we now always track global mean and variance.")
------------------------------------------------------------------------------- Layer (type) Input Shape Output Shape Param # =============================================================================== Conv2D-1 [[1, 3, 32, 32]] [1, 48, 16, 16] 1,296 BatchNorm2D-1 [[1, 48, 16, 16]] [1, 48, 16, 16] 192 ConvBN-1 [[1, 3, 32, 32]] [1, 48, 16, 16] 1,488 Conv2D-2 [[1, 3, 32, 32]] [1, 48, 16, 16] 144 BatchNorm2D-2 [[1, 48, 16, 16]] [1, 48, 16, 16] 192 ConvBN-2 [[1, 3, 32, 32]] [1, 48, 16, 16] 336 ReLU-1 [[1, 48, 16, 16]] [1, 48, 16, 16] 0 RepVGGBlock-1 [[1, 3, 32, 32]] [1, 48, 16, 16] 1,824 Conv2D-3 [[1, 48, 16, 16]] [1, 48, 8, 8] 20,736 BatchNorm2D-3 [[1, 48, 8, 8]] [1, 48, 8, 8] 192 ConvBN-3 [[1, 48, 16, 16]] [1, 48, 8, 8] 20,928 Conv2D-4 [[1, 48, 16, 16]] [1, 48, 8, 8] 2,304 BatchNorm2D-4 [[1, 48, 8, 8]] [1, 48, 8, 8] 192 ConvBN-4 [[1, 48, 16, 16]] [1, 48, 8, 8] 2,496 ReLU-2 [[1, 48, 8, 8]] [1, 48, 8, 8] 0 RepVGGBlock-2 [[1, 48, 16, 16]] [1, 48, 8, 8] 23,424 BatchNorm2D-5 [[1, 48, 8, 8]] [1, 48, 8, 8] 192 Conv2D-5 [[1, 48, 8, 8]] [1, 48, 8, 8] 20,736 BatchNorm2D-6 [[1, 48, 8, 8]] [1, 48, 8, 8] 192 ConvBN-5 [[1, 48, 8, 8]] [1, 48, 8, 8] 20,928 Conv2D-6 [[1, 48, 8, 8]] [1, 48, 8, 8] 2,304 BatchNorm2D-7 [[1, 48, 8, 8]] [1, 48, 8, 8] 192 ConvBN-6 [[1, 48, 8, 8]] [1, 48, 8, 8] 2,496 ReLU-3 [[1, 48, 8, 8]] [1, 48, 8, 8] 0 RepVGGBlock-3 [[1, 48, 8, 8]] [1, 48, 8, 8] 23,616 Conv2D-7 [[1, 48, 8, 8]] [1, 96, 4, 4] 41,472 BatchNorm2D-8 [[1, 96, 4, 4]] [1, 96, 4, 4] 384 ConvBN-7 [[1, 48, 8, 8]] [1, 96, 4, 4] 41,856 Conv2D-8 [[1, 48, 8, 8]] [1, 96, 4, 4] 4,608 BatchNorm2D-9 [[1, 96, 4, 4]] [1, 96, 4, 4] 384 ConvBN-8 [[1, 48, 8, 8]] [1, 96, 4, 4] 4,992 ReLU-4 [[1, 96, 4, 4]] [1, 96, 4, 4] 0 RepVGGBlock-4 [[1, 48, 8, 8]] [1, 96, 4, 4] 46,848 BatchNorm2D-10 [[1, 96, 4, 4]] [1, 96, 4, 4] 384 Conv2D-9 [[1, 96, 4, 4]] [1, 96, 4, 4] 82,944 BatchNorm2D-11 [[1, 96, 4, 4]] [1, 96, 4, 4] 384 ConvBN-9 [[1, 96, 4, 4]] [1, 96, 4, 4] 83,328 Conv2D-10 [[1, 96, 4, 4]] [1, 96, 4, 4] 9,216 BatchNorm2D-12 [[1, 96, 4, 4]] [1, 96, 4, 4] 384 ConvBN-10 [[1, 96, 4, 4]] [1, 96, 4, 4] 9,600 ReLU-5 [[1, 96, 4, 4]] [1, 96, 4, 4] 0 RepVGGBlock-5 [[1, 96, 4, 4]] [1, 96, 4, 4] 93,312 BatchNorm2D-13 [[1, 96, 4, 4]] [1, 96, 4, 4] 384 Conv2D-11 [[1, 96, 4, 4]] [1, 96, 4, 4] 82,944 BatchNorm2D-14 [[1, 96, 4, 4]] [1, 96, 4, 4] 384 ConvBN-11 [[1, 96, 4, 4]] [1, 96, 4, 4] 83,328 Conv2D-12 [[1, 96, 4, 4]] [1, 96, 4, 4] 9,216 BatchNorm2D-15 [[1, 96, 4, 4]] [1, 96, 4, 4] 384 ConvBN-12 [[1, 96, 4, 4]] [1, 96, 4, 4] 9,600 ReLU-6 [[1, 96, 4, 4]] [1, 96, 4, 4] 0 RepVGGBlock-6 [[1, 96, 4, 4]] [1, 96, 4, 4] 93,312 BatchNorm2D-16 [[1, 96, 4, 4]] [1, 96, 4, 4] 384 Conv2D-13 [[1, 96, 4, 4]] [1, 96, 4, 4] 82,944 BatchNorm2D-17 [[1, 96, 4, 4]] [1, 96, 4, 4] 384 ConvBN-13 [[1, 96, 4, 4]] [1, 96, 4, 4] 83,328 Conv2D-14 [[1, 96, 4, 4]] [1, 96, 4, 4] 9,216 BatchNorm2D-18 [[1, 96, 4, 4]] [1, 96, 4, 4] 384 ConvBN-14 [[1, 96, 4, 4]] [1, 96, 4, 4] 9,600 ReLU-7 [[1, 96, 4, 4]] [1, 96, 4, 4] 0 RepVGGBlock-7 [[1, 96, 4, 4]] [1, 96, 4, 4] 93,312 Conv2D-15 [[1, 96, 4, 4]] [1, 192, 2, 2] 165,888 BatchNorm2D-19 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-15 [[1, 96, 4, 4]] [1, 192, 2, 2] 166,656 Conv2D-16 [[1, 96, 4, 4]] [1, 192, 2, 2] 18,432 BatchNorm2D-20 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-16 [[1, 96, 4, 4]] [1, 192, 2, 2] 19,200 ReLU-8 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-8 [[1, 96, 4, 4]] [1, 192, 2, 2] 185,856 BatchNorm2D-21 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 Conv2D-17 [[1, 192, 2, 2]] [1, 192, 2, 2] 331,776 BatchNorm2D-22 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-17 [[1, 192, 2, 2]] [1, 192, 2, 2] 332,544 Conv2D-18 [[1, 192, 2, 2]] [1, 192, 2, 2] 36,864 BatchNorm2D-23 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-18 [[1, 192, 2, 2]] [1, 192, 2, 2] 37,632 ReLU-9 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-9 [[1, 192, 2, 2]] [1, 192, 2, 2] 370,944 BatchNorm2D-24 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 Conv2D-19 [[1, 192, 2, 2]] [1, 192, 2, 2] 331,776 BatchNorm2D-25 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-19 [[1, 192, 2, 2]] [1, 192, 2, 2] 332,544 Conv2D-20 [[1, 192, 2, 2]] [1, 192, 2, 2] 36,864 BatchNorm2D-26 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-20 [[1, 192, 2, 2]] [1, 192, 2, 2] 37,632 ReLU-10 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-10 [[1, 192, 2, 2]] [1, 192, 2, 2] 370,944 BatchNorm2D-27 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 Conv2D-21 [[1, 192, 2, 2]] [1, 192, 2, 2] 331,776 BatchNorm2D-28 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-21 [[1, 192, 2, 2]] [1, 192, 2, 2] 332,544 Conv2D-22 [[1, 192, 2, 2]] [1, 192, 2, 2] 36,864 BatchNorm2D-29 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-22 [[1, 192, 2, 2]] [1, 192, 2, 2] 37,632 ReLU-11 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-11 [[1, 192, 2, 2]] [1, 192, 2, 2] 370,944 BatchNorm2D-30 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 Conv2D-23 [[1, 192, 2, 2]] [1, 192, 2, 2] 331,776 BatchNorm2D-31 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-23 [[1, 192, 2, 2]] [1, 192, 2, 2] 332,544 Conv2D-24 [[1, 192, 2, 2]] [1, 192, 2, 2] 36,864 BatchNorm2D-32 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-24 [[1, 192, 2, 2]] [1, 192, 2, 2] 37,632 ReLU-12 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-12 [[1, 192, 2, 2]] [1, 192, 2, 2] 370,944 BatchNorm2D-33 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 Conv2D-25 [[1, 192, 2, 2]] [1, 192, 2, 2] 331,776 BatchNorm2D-34 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-25 [[1, 192, 2, 2]] [1, 192, 2, 2] 332,544 Conv2D-26 [[1, 192, 2, 2]] [1, 192, 2, 2] 36,864 BatchNorm2D-35 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-26 [[1, 192, 2, 2]] [1, 192, 2, 2] 37,632 ReLU-13 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-13 [[1, 192, 2, 2]] [1, 192, 2, 2] 370,944 BatchNorm2D-36 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 Conv2D-27 [[1, 192, 2, 2]] [1, 192, 2, 2] 331,776 BatchNorm2D-37 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-27 [[1, 192, 2, 2]] [1, 192, 2, 2] 332,544 Conv2D-28 [[1, 192, 2, 2]] [1, 192, 2, 2] 36,864 BatchNorm2D-38 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-28 [[1, 192, 2, 2]] [1, 192, 2, 2] 37,632 ReLU-14 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-14 [[1, 192, 2, 2]] [1, 192, 2, 2] 370,944 BatchNorm2D-39 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 Conv2D-29 [[1, 192, 2, 2]] [1, 192, 2, 2] 331,776 BatchNorm2D-40 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-29 [[1, 192, 2, 2]] [1, 192, 2, 2] 332,544 Conv2D-30 [[1, 192, 2, 2]] [1, 192, 2, 2] 36,864 BatchNorm2D-41 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-30 [[1, 192, 2, 2]] [1, 192, 2, 2] 37,632 ReLU-15 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-15 [[1, 192, 2, 2]] [1, 192, 2, 2] 370,944 BatchNorm2D-42 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 Conv2D-31 [[1, 192, 2, 2]] [1, 192, 2, 2] 331,776 BatchNorm2D-43 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-31 [[1, 192, 2, 2]] [1, 192, 2, 2] 332,544 Conv2D-32 [[1, 192, 2, 2]] [1, 192, 2, 2] 36,864 BatchNorm2D-44 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-32 [[1, 192, 2, 2]] [1, 192, 2, 2] 37,632 ReLU-16 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-16 [[1, 192, 2, 2]] [1, 192, 2, 2] 370,944 BatchNorm2D-45 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 Conv2D-33 [[1, 192, 2, 2]] [1, 192, 2, 2] 331,776 BatchNorm2D-46 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-33 [[1, 192, 2, 2]] [1, 192, 2, 2] 332,544 Conv2D-34 [[1, 192, 2, 2]] [1, 192, 2, 2] 36,864 BatchNorm2D-47 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-34 [[1, 192, 2, 2]] [1, 192, 2, 2] 37,632 ReLU-17 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-17 [[1, 192, 2, 2]] [1, 192, 2, 2] 370,944 BatchNorm2D-48 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 Conv2D-35 [[1, 192, 2, 2]] [1, 192, 2, 2] 331,776 BatchNorm2D-49 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-35 [[1, 192, 2, 2]] [1, 192, 2, 2] 332,544 Conv2D-36 [[1, 192, 2, 2]] [1, 192, 2, 2] 36,864 BatchNorm2D-50 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-36 [[1, 192, 2, 2]] [1, 192, 2, 2] 37,632 ReLU-18 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-18 [[1, 192, 2, 2]] [1, 192, 2, 2] 370,944 BatchNorm2D-51 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 Conv2D-37 [[1, 192, 2, 2]] [1, 192, 2, 2] 331,776 BatchNorm2D-52 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-37 [[1, 192, 2, 2]] [1, 192, 2, 2] 332,544 Conv2D-38 [[1, 192, 2, 2]] [1, 192, 2, 2] 36,864 BatchNorm2D-53 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-38 [[1, 192, 2, 2]] [1, 192, 2, 2] 37,632 ReLU-19 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-19 [[1, 192, 2, 2]] [1, 192, 2, 2] 370,944 BatchNorm2D-54 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 Conv2D-39 [[1, 192, 2, 2]] [1, 192, 2, 2] 331,776 BatchNorm2D-55 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-39 [[1, 192, 2, 2]] [1, 192, 2, 2] 332,544 Conv2D-40 [[1, 192, 2, 2]] [1, 192, 2, 2] 36,864 BatchNorm2D-56 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-40 [[1, 192, 2, 2]] [1, 192, 2, 2] 37,632 ReLU-20 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-20 [[1, 192, 2, 2]] [1, 192, 2, 2] 370,944 BatchNorm2D-57 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 Conv2D-41 [[1, 192, 2, 2]] [1, 192, 2, 2] 331,776 BatchNorm2D-58 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-41 [[1, 192, 2, 2]] [1, 192, 2, 2] 332,544 Conv2D-42 [[1, 192, 2, 2]] [1, 192, 2, 2] 36,864 BatchNorm2D-59 [[1, 192, 2, 2]] [1, 192, 2, 2] 768 ConvBN-42 [[1, 192, 2, 2]] [1, 192, 2, 2] 37,632 ReLU-21 [[1, 192, 2, 2]] [1, 192, 2, 2] 0 RepVGGBlock-21 [[1, 192, 2, 2]] [1, 192, 2, 2] 370,944 Conv2D-43 [[1, 192, 2, 2]] [1, 1280, 1, 1] 2,211,840 BatchNorm2D-60 [[1, 1280, 1, 1]] [1, 1280, 1, 1] 5,120 ConvBN-43 [[1, 192, 2, 2]] [1, 1280, 1, 1] 2,216,960 Conv2D-44 [[1, 192, 2, 2]] [1, 1280, 1, 1] 245,760 BatchNorm2D-61 [[1, 1280, 1, 1]] [1, 1280, 1, 1] 5,120 ConvBN-44 [[1, 192, 2, 2]] [1, 1280, 1, 1] 250,880 ReLU-22 [[1, 1280, 1, 1]] [1, 1280, 1, 1] 0 RepVGGBlock-22 [[1, 192, 2, 2]] [1, 1280, 1, 1] 2,467,840 AdaptiveAvgPool2D-1 [[1, 1280, 1, 1]] [1, 1280, 1, 1] 0 Linear-1 [[1, 1280]] [1, 10] 12,810 ===============================================================================Total params: 23,556,330Trainable params: 23,509,034Non-trainable params: 47,296-------------------------------------------------------------------------------Input size (MB): 0.01Forward/backward pass size (MB): 2.38Params size (MB): 89.86Estimated Total Size (MB): 92.25-------------------------------------------------------------------------------
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:298: UserWarning: :53The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future. op_type, op_type, EXPRESSION_MAP[method_name]))/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:298: UserWarning: /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/metric/metrics.py:270The behavior of expression A == B has been unified with equal(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use equal(X, Y, axis=0) instead of A == B. This transitional warning will be dropped in the future. op_type, op_type, EXPRESSION_MAP[method_name]))
数据集配置
本次使用经典的 Cifar10 分类数据集进行演示本数据集已集成在 Paddle 中,可以直接通过 API 进行调用In [5]
# 配置数据预处理# 通道转置 + 归一化transform = Compose([Transpose(), Normalize(mean=127.5, std=127.5)])# 加载数据集train_dataset = Cifar10(mode='train', transform=transform)val_dataset = Cifar10(mode='test', transform=transform)
Cache file /home/aistudio/.cache/paddle/dataset/cifar/cifar-10-python.tar.gz not found, downloading https://dataset.bj.bcebos.com/cifar/cifar-10-python.tar.gz Begin to downloadDownload finished
模型训练
通过 model.fit 接口进行模型训练还可以通过添加回调函数进行训练数据可视化等操作可视化训练数据样例如下图:
In [6]
# 配置 VisualDL 可视化回调函数# 训练启动后可通过右侧可视化查看训练数据vdl_callback = paddle.callbacks.VisualDL(log_dir='log')# 模型训练# train_data 训练数据# eval_data 测试数据# batch_size 数据批大小# epochs 训练轮次# eval_freq 评测间隔# log_freq log 间隔# save_dir 保存目录# verbose log 方式# drop_last 是否丢弃末尾数据# num_workers 读取线程# callbacks 回调函数model.fit( train_data=train_dataset, eval_data=val_dataset, batch_size=256, epochs=2, eval_freq=1, log_freq=20, save_dir='save_models', save_freq=1, verbose=1, drop_last=False, shuffle=True, num_workers=8, callbacks=vdl_callback)
The loss value printed in the log is the current step, and the metric is the average value of previous step.Epoch 1/2
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:77: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working return (isinstance(seq, collections.Sequence) and
step 196/196 [==============================] - loss: 1.0396 - acc_top1: 0.6414 - acc_top5: 0.9535 - 51ms/step save checkpoint at /home/aistudio/save_models/0Eval begin...The loss value printed in the log is the current batch, and the metric is the average value of previous step.step 40/40 [==============================] - loss: 2.1800 - acc_top1: 0.4489 - acc_top5: 0.9243 - 34ms/step Eval samples: 10000Epoch 2/2step 196/196 [==============================] - loss: 0.5899 - acc_top1: 0.7437 - acc_top5: 0.9820 - 48ms/step save checkpoint at /home/aistudio/save_models/1Eval begin...The loss value printed in the log is the current batch, and the metric is the average value of previous step.step 40/40 [==============================] - loss: 2.4723 - acc_top1: 0.4512 - acc_top5: 0.9275 - 37ms/step Eval samples: 10000save checkpoint at /home/aistudio/save_models/final
模型预测
通过 model.predict_batch 可单独对一张图片进行预测In [8]
# 标签列表classes = ['飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车']# 预测图像路径test_img_path = 'cat.jpg'# 显示预测图像display(Image(test_img_path))# 读取测试图像test_img = cv2.imread(test_img_path)# 数据预处理# 缩放 + 通道转置 + 归一化 + 新增维度test_img = cv2.resize(test_img, (32, 32))test_img = transform(test_img)test_img = test_img[np.newaxis, ...]# 模型预测result = model.predict_batch(test_img)# 结果后处理# 取置信度最大的标签下标 + 标签转换index = np.argmax(result)predict_label = classes[index]# 打印结果print('该图片的预测结果为:%s' % predict_label)
该图片的预测结果为:猫
以上就是高层 API 实现 RepVGG 模型微调的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/51124.html
微信扫一扫
支付宝扫一扫