刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence

chatgpt的出现是ai研究中具有重大历史意义的突破性进展,看似无所不能的chatgpt对于人类社会产生了许多积极的影响,但同时也带来了发人深省的冲突。如何规避因人工智能的崛起而引发的风险和消极影响,是人工智能领域政策的制定者和领域内的专业人士需要深入思考和探讨的问题。

本期《刊·见》为您带来人工智能领域优质期刊Applied Artificial Intelligence。除了介绍期刊,我们还为您选出了近三年内高被引和2022年高阅读量的文章,供您阅读

基于迁移学习的框架,为番茄植株上的害虫分类 通用学习均衡优化器:一种新的用于生物数据分类的特征选择方法 综述:基于深度学习的2D图像语义分割体系架构的调查 综述:人工智能驱动的网络攻击的新威胁

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence

Applied Artificial Intelligence 是奥地利控制论研究学会官方刊物,旨在解决应用研究和人工智能应用方面的问题,同时为人工智能领域有影响力的研究提供交流观点和想法的平台。期刊关注如下领域,包括但不限于人工智能系统在解决管理、工业、工程、行政和教育工作方面的进展;对现有人工智能系统和工具的评估,侧重比较研究和用户体验;人工智能对经济、社会和文化的影响。

该期刊已被SCIE, Scopus, CSA, INSPECs, PsycINFO等数据库收录。

刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence

期刊主页:http://985.so/m1ug4

影响因子

根据JCR显示,Applied Artificial Intelligence 2021年影响因子为2.777,在

计算机:人工智能领域排名82/145

工程:电子与电气领域排名134/276

CiteScore

根据Scopus显示, Applied Artificial Intelligence 的

CiteScore(2021)为 3.0

CiteScoreTracker(2022)为 3.7

在计算机科学:人工智能领域排名 151/269

编辑团队

Applied Artificial Intelligence 的主编是来自奥地利人工智能研究所和维也纳大学的Robert Trappl教授。在副主编团队中,来自中国的是山东财经大学的刘培德教授。此外,编委团队由多国专家学者组成。

主编

Robert Trappl教授

刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence

Robert Trappl教授是奥地利人工智能研究所的负责人,他还是维也纳医科大学脑研究中心医学控制论和人工智能学科的名誉教授,曾担任维也纳大学医学控制论和人工智能系的全职教授和系主任长达30年。

来自中国的副主编

刘培德教授

刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence

刘培德教授是山东财经大学管理科学与工程学院院长、山东财经大学海洋经济与管理研究中心主任、中国优秀教师。

他的主要研究方向是:决策理论与优化方法;海洋经济与管理;大数据商务分析。

刊内新闻

目前,Applied Artificial Intelligence正在针对以下主题进行征稿。

主题一:Multiagent Systems in the Era of Trustworthy Artificial Intelligence

可信赖的人工智能时代的多智能体系统

投稿截止日期: 2023年8月23日

主题二:Artificial Intelligence Applications in Industry 4.0

工业4.0中的人工智能

投稿截止日期:2023年8月31日

主题三:Explainable Machine Learning Operational Applied Research and Applications for Improved Decision-Making

可解释的机器学习应用研究和提升决策的应用

AI智研社 AI智研社

AI智研社是一个专注于人工智能领域的综合性平台

AI智研社 15 查看详情 AI智研社

投稿截止日期:2023年10月30日

作者分布

根据JCR显示,近三年在Applied Artificial Intelligence 发文的国家中,排名前三的国家有:

印度 中国 伊朗

文章推荐可以前往【TandF学术】捷阅读:http://985.so/m1ug6

刊内高被引文章

刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence

Full article: Transfer Learning-Based Framework for Classification of Pest in Tomato Plants (tandfonline.com)

基于迁移学习的框架,为番茄植株上的害虫分类

作者:Gayatri Pattnaik et al.

刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence The concept of transfer learning

文章摘要:

Pest in the plant is a major challenge in the agriculture sector. Hence, early and accurate detection and classification of pests could help in precautionary measures while substantially reducing economic losses. Recent developments in deep convolutional neural network (CNN) have drastically improved the accuracy of image recognition systems. In this paper, we have presented a transfer learning of pre-trained deep CNN-based framework for classification of pest in tomato plants. The dataset for this study has been collected from online sources that consist of 859 images categorized into 10 classes. This study is first of its kind where: (i) dataset with 10 classes of tomato pest are involved; (ii) an exhaustive comparison of the performance of 15 pre-trained deep CNN models has been presented on tomato pest classification. The experimental results show that the highest classification accuracy of 88.83% has been obtained using DenseNet169 model. Further, the encouraging results of transfer learning-based models demonstrate its effectiveness in pest detection and classification tasks.

刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence

Full article: General Learning Equilibrium Optimizer: A New Feature Selection Method for Biological Data Classification (tandfonline.com)

通用学习均衡优化器:一种新的用于生物数据分类的特征选择方法

作者:Jingwei Too & Seyedali Mirjalili

刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence

Basic concept of general learning strategy

文章摘要:

Finding relevant information from biological data is a critical issue for the study of disease diagnosis, especially when an enormous number of biological features are involved. Intentionally, the feature selection can be an imperative preprocessing step before the classification stage. Equilibrium optimizer (EO) is a recently established metaheuristic algorithm inspired by the principle of dynamic source and sink models when measuring the equilibrium states. In this research, a new variant of EO called general learning equilibrium optimizer (GLEO) is proposed as a wrapper feature selection method. This approach adopts a general learning strategy to help the particles to evade the local areas and improve the capability of finding promising regions. The proposed GLEO aims to identify a subset of informative biological features among a large number of attributes. The performance of the GLEO algorithm is validated on 16 biological datasets, where nine of them represent high dimensionality with a smaller number of instances. The results obtained show the excellent performance of GLEO in terms of fitness value, accuracy, and feature size in comparison with other metaheuristic algorithms.

刊内2022年高阅读量文章

刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence

Full article: A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D Images (tandfonline.com)

综述:基于深度学习的2D图像语义分割体系架构的调查

作者:Irem Ulku & Erdem Akagündüz

刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence

A sample image and its annotation for object, instance and parts segmentations separately, from left to right

文章摘要:

Semantic segmentation is the pixel-wise labeling of an image. Boosted by the extraordinary ability of convolutional neural networks (CNN) in creating semantic, high-level and hierarchical image features; several deep learning-based 2D semantic segmentation approaches have been proposed within the last decade. In this survey, we mainly focus on the recent scientific developments in semantic segmentation, specifically on deep learning-based methods using 2D images. We started with an analysis of the public image sets and leaderboards for 2D semantic segmentation, with an overview of the techniques employed in performance evaluation. In examining the evolution of the field, we chronologically categorized the approaches into three main periods, namely pre-and early deep learning era, the fully convolutional era, and the post-FCN era. We technically analyzed the solutions put forward in terms of solving the fundamental problems of the field, such as fine-grained localization and scale invariance. Before drawing our conclusions, we present a table of methods from all mentioned eras, with a summary of each approach that explains their contribution to the field. We conclude the survey by discussing the current challenges of the field and to what extent they have been solved.

刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence

Full article: The Emerging Threat of Ai-driven Cyber Attacks: A Review (tandfonline.com)

综述:人工智能驱动的网络攻击的新威胁

作者:Blessing Guembe et al.

刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence

PRISMA flowchart illustrating the systematic review process and article selection at various stages

文章摘要:

Cyberattacks are becoming more sophisticated and ubiquitous. Cybercriminals are inevitably adopting Artificial Intelligence (AI) techniques to evade the cyberspace and cause greater damages without being noticed. Researchers in cybersecurity domain have not researched the concept behind AI-powered cyberattacks enough to understand the level of sophistication this type of attack possesses. This paper aims to investigate the emerging threat of AI-powered cyberattacks and provide insights into malicious used of AI in cyberattacks. The study was performed through a three-step process by selecting only articles based on quality, exclusion, and inclusion criteria that focus on AI-driven cyberattacks. Searches in ACM, arXiv Blackhat, Scopus, Springer, MDPI, IEEE Xplore and other sources were executed to retrieve relevant articles. Out of the 936 papers that met our search criteria, a total of 46 articles were finally selected for this study. The result shows that 56% of the AI-Driven cyberattack technique identified was demonstrated in the access and penetration phase, 12% was demonstrated in exploitation, and command and control phase, respectively; 11% was demonstrated in the reconnaissance phase; 9% was demonstrated in the delivery phase of the cybersecurity kill chain. The findings in this study shows that existing cyber defence infrastructures will become inadequate to address the increasing speed, and complex decision logic of AI-driven attacks. Hence, organizations need to invest in AI cybersecurity infrastructures to combat these emerging threats.

审稿周期

从提交稿件到获取初审意见,平均需要61天 获取首个同行评审决定,平均需要62天 稿件一旦接受后,在线出版平均需要15天

文章出版费(APC)

您可以通过我们的作者服务网站查询本期刊的标准文章出版费。

Taylor & Francis Group 现在开通APC便捷支付功能,可以一键通过微信、支付宝和银联使用人民币便捷付款。

刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence

为帮助更多科研人员选择更加合适的期刊,Taylor & Francis推出专栏——刊·见,该专栏致力于为读者和广大科研人员带来Taylor & Francis旗下期刊的详细解读,从期刊的基本情况、编委阵容、社会影响力到审稿速度、高被引文章等实用信息,专栏将为您带来最详细的介绍,让您更加全面地了解Taylor & Francis旗下优秀的国际期刊,帮助更多中国卓越科研成果顺利在国际期刊上发表。

以上内容可能更新,请以期刊官网主页为准。

以上就是刊·见 | 捕捉人工智能领域最新动态?收藏Applied Artificial Intelligence的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/521393.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月9日 05:48:13
下一篇 2025年11月9日 05:49:17

相关推荐

  • ai做html怎么运行_AI生成html运行步骤【教程】

    答案是使用AI生成HTML代码后,将其保存为.html文件并用浏览器打开即可运行。具体步骤为:1. 在AI工具中输入需求生成HTML代码;2. 将代码复制到文本编辑器并另存为index.html,编码选UTF-8,类型选“所有文件”;3. 双击该文件用浏览器打开,若无法正常显示需检查文件后缀、编码及…

    2025年12月23日
    000
  • 如何用HTML插入标签云组件_HTML CSS3变换与随机颜色生成算法

    使用HTML构建标签结构,CSS3添加旋转与过渡效果,JavaScript生成随机HSL颜色并设置字体大小,实现动态交互的标签云组件。 要在网页中实现一个动态的标签云组件,结合 HTML、CSS3 变换和随机颜色生成算法,可以按照以下步骤操作。这个组件不仅能提升页面视觉效果,还能通过色彩和旋转增加交…

    2025年12月23日
    000
  • 如何在Go Gin应用中集成前端JavaScript模块(如Sentry)

    本文探讨了在Go Gin框架下,通过HTML模板服务前端页面时,如何有效集成JavaScript模块(如Sentry)。针对浏览器不直接支持Node.js模块导入语法的问题,文章详细阐述了利用CDN引入Sentry SDK的解决方案,并提供了具体的代码示例,帮助开发者实现前端错误监控功能,避免了复杂…

    2025年12月23日
    000
  • html官网浏览入口_html网站设计免费平台

    html官网浏览入口在https://www.codepen.io,该平台支持实时预览代码、创建Pen项目、Fork开源示例,可添加外部资源,具备点赞评论收藏等社区互动功能,设有挑战活动与作品集分类,开放API接口,界面简洁适合初学者,在线编写无需配置环境,支持多种预处理器和响应式测试。 html官…

    2025年12月23日
    000
  • html如何修改日期样式

    在html中,可以使用“::-webkit-datetime-edit”伪元素选择器来修改日期格式,只需要用该选择器选中元素,在设置具体样式即可,具体语法为“::-webkit-datetime-edit{属性:属性值}”。 本教程操作环境:windows7系统、CSS3&&HTML…

    2025年12月21日
    100
  • 单选框的type属性值为什么

    单选框的type属性值为“radio”。html type属性可以规定要显示的输入框“”元素的类型;值为“radio”时显示为单选框、“checkbox”时显示为复选框、“select”时显示为下拉式选框等等。 本教程操作环境:windows7系统、HTML5版、Dell G3电脑。 在HTML中,…

    2025年12月21日
    000
  • HTML中type是什么意思

    在HTML中,type是类型的意思,是一个标签属性,主要用于定义标签元素的类型或文档(脚本)的MIME类型;例在input标签中type属性可以规定input元素的类型,在script标签中type属性可以规定脚本的MIME类型。 本教程操作环境:windows7系统、html5版、Dell G3电…

    2025年12月21日
    000
  • HTML中ul标签如何去掉点?HTML无序列表的样式实例解析

    本篇文章主要讲述的是关于html中的ul标签的默认小点给取消掉,还有关于html的无序列表ul标签的样式解释,给出了ul标签中的type属性三种值的介绍。现在就让我们一起来看本篇文章吧 首先这篇文章一开始我们就开始介绍在html中是怎么把ul标签的点给去掉的: 大家应该都使用过ul无序列表标签,ul…

    2025年12月21日 好文分享
    000
  • html中的ol标签如何去掉标号呢?标签的使用方法总结

    本篇文章介绍了html的ol标签是怎么去掉序号标号的,这里还有代码的详细解释,还有介绍了关于html ol有序列表标签如何更改序号,下文介绍了三种序号,大家也可以自己去想填写怎样的序号。现在来看这篇文章吧 一、我们先看看html中的ol标签是如何去掉标号的呢: 我们都知道html的ol标签是个有序列…

    2025年12月21日 好文分享
    000
  • HTML ul标签的什么意思?HTML ul标签的作用详解

    本篇文章主要的为大家讲解了关于html ul标签的三种重要的用法,还有关于html ul标签的解释,包含li标签的还有type属性对ul标签的使用情况,好了,下面大家一起来看文章吧 首先让我们先来解释一下HTML ul标签的意思: ul标签定义的是表格当中无序列表,表格当中的无序列表都是在 标签之中…

    2025年12月21日
    000
  • javascript框架和库是什么_如何选择React、Vue或Angular?

    JavaScript框架与库分别提供按需调用的功能集合和约束性开发结构;React是UI组件库,生态灵活但需自行整合工具;Vue渐进式易上手,兼顾原型与工程化;Angular是全功能TypeScript框架,适合强规范企业级项目。 JavaScript框架和库是封装好的代码集合,用来简化前端开发——…

    2025年12月21日
    000
  • React应用生产环境环境变量配置深度指南

    本文针对react应用在生产环境中无法读取`.env`文件配置的环境变量问题,深入剖析其工作原理、常见原因及排查方法。通过详细的步骤和示例代码,指导开发者正确配置和使用环境变量,解决api调用层面的`null`响应问题,确保应用在生产环境下的稳定运行。 在React应用开发中,环境变量(如API密钥…

    2025年12月21日
    000
  • p5.js中类方法声明的语法解析与常见错误修复指南

    本文旨在解决从java processing迁移至p5.js时常见的语法错误,特别是类内部方法声明不当引发的问题。我们将深入探讨javascript中全局函数与类方法声明的语法差异,提供清晰的示例代码,并指导如何识别和修复“unexpected token”及“declaration or stat…

    2025年12月21日
    000
  • p5.js中类方法声明的语法修正与迁移指南

    本文深入探讨了将Processing/Java代码转换为p5.js时,因JavaScript类方法声明语法差异而引发的常见错误。我们将重点解析`Unexpected token`和`Declaration or statement expected`等错误信息,明确全局函数与类成员方法在JavaSc…

    2025年12月21日
    000
  • JS注解怎么实现文档化_ JS注解生成开发文档的流程与工具

    JSDoc是一种JavaScript结构化注释规范,通过@param、@returns等标签描述代码元素,并借助工具生成HTML文档,结合IDE支持和CI/CD可提升团队协作效率。 JavaScript本身不支持原生注解(Annotation)像Java那样的语法,但通过约定的注释格式和配套工具,可…

    2025年12月21日
    000
  • TypeScript泛型函数中复杂对象结构类型推断的精确控制

    本文探讨了在typescript中处理复杂嵌套对象结构时,如何为泛型函数实现精确的类型推断。通过一个具体的汽车品牌和车型数据场景,我们分析了`object.values`等操作可能导致类型信息丢失的问题。核心解决方案是利用映射类型(mapped types)重构数据结构,以显式地建立泛型键与对应值之…

    2025年12月21日
    000
  • JS注解怎么标注联合类型_ JS联合类型的注解书写与使用技巧

    在JavaScript中可通过JSDoc使用联合类型注解,如string|number表示多类型支持,结合@param、@typedef等标签提升代码可读性与编辑器提示,适用于函数参数、返回值等场景。 在JavaScript中,虽然原生不支持类型注解,但在使用JSDoc配合现代编辑器(如VS Cod…

    2025年12月21日
    000
  • VS Code主题开发:告别JSON,拥抱脚本化生成

    vs code主题扩展最终需json格式定义,但开发者可通过javascript或typescript等脚本语言生成此json文件。这种方法有效解决了大型json文件难以维护、不支持注释等问题,并能实现颜色动态计算,显著提升主题开发的灵活性与效率。 为什么选择脚本化生成VS Code主题? 在开发V…

    2025年12月20日
    000
  • 解决 ChatGPT 扩展选择器失效问题:一个实战教程

    本文旨在帮助开发者解决 ChatGPT 网页更新导致扩展选择器失效的问题。通过分析问题原因,提供利用开发者工具查找新选择器的方法,并展示了使用 getElementsByClassName() 替代 querySelector() 的解决方案,以确保扩展功能在 ChatGPT 最新版本中正常运行。 …

    2025年12月20日
    000
  • ChatGPT 扩展失效:定位新版选择器并修复

    本文旨在帮助开发者解决因 ChatGPT 网页更新导致扩展失效的问题。通过分析失效原因,提供利用开发者工具定位新版选择器的实用方法,并给出示例代码,帮助开发者快速修复扩展,恢复其功能。 当 ChatGPT 网页更新时,依赖于特定 CSS 选择器的扩展程序可能会失效。这通常是因为网页结构的改变导致原有…

    2025年12月20日
    000

发表回复

登录后才能评论
关注微信