【车道线+自动驾驶】用Paddle高层API实现车道线转角回归模型+部署

用Paddle2.2高层API实现车道线打角回归预测模型+Paddle inference边缘设备GPU部署


应该是全网第一个用paddle2.0+高层api实现小车车道线预测回归模型的搭建、训练和部署全流程的项目啦,希望能帮助做小车和机器人的小伙伴快速实现小车的无人驾驶功能~

车道线打角回归预测模型也是每年的全国大学生智能汽车竞赛都会包含的基础任务之一,希望能作为一个baseline让大家快速学习起来。

数据采集的整体架构如下图所示:

【车道线+自动驾驶】用Paddle高层API实现车道线转角回归模型+部署 - 创想鸟

智能小车上使用标准的广角摄像头作为视觉传感器,其基本参数如下表所示:

【车道线+自动驾驶】用Paddle高层API实现车道线转角回归模型+部署 - 创想鸟

采集的数据已上传至AI Studio:车道线检测回归数据集

1、导入必要库

In [4]

import osimport cv2import iofrom tqdm import tqdmimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image as PilImageimport paddlefrom paddle.nn import functional as Fpaddle.__version__
'2.2.0'

In [5]

!unzip -oq /home/aistudio/data/data46903/0728_carline.zip

2、数据集制作+数据预处理

数据采集

通过手柄遥控小车,小车实时记录当前图片和手柄的打角数据,从而得到数据集。


数据集信息

本数据集共13448张图像和对应的打角数据。

数据具体格式

图像 >——> 打角数据

每一张图像都会对应一个打角数据。 图像和打角数据分别保存在img和data.txt下,在dataset的建立过程中,我们只需要将图像和打角数据一一对应进行封装即可。

数据对应形式如图所示:

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【车道线+自动驾驶】用Paddle高层API实现车道线转角回归模型+部署 - 创想鸟

2.1、定义数据集处理变量

In [2]

img_folder_path = "data/img"dataset_path = "data"txt_path = "data/data.txt"IMAGE_SIZE = (224, 224)

In [6]

# 检查数据集中图像和打角数据个数是否对应import os# 1、读取图像数据和角度数据angle_list = []f = open(txt_path)for txt in f.readlines():    txt.split("n")    angle_num = int(txt)    angle_list.append(angle_num)img_list = []for img_path in tqdm(os.listdir(img_folder_path)):    img_path = os.path.join(img_folder_path, img_path)    img_list.append(img_path)# 2、数据归一化(如果过于发散,模型不容易收敛)# 这里我的打角数据大小为:900-2100,中间值为1500for i, angle in enumerate(angle_list):     angle = (angle-1500)/600    angle_list[i] = angletry:    os.remove(os.path.join(dataset_path, "train.txt"))    os.remove(os.path.join(dataset_path, "eval.txt"))except:    passtrain_txt = open(os.path.join(dataset_path, "train.txt"), "w")eval_txt = open(os.path.join(dataset_path, "eval.txt"), "w")n = 0for img_path, label in tqdm(zip(img_list, angle_list)):    n += 1    if n % 10 != 0:        train_txt.write(img_path+" "+str(label))        train_txt.write("n")    else:        eval_txt.write(img_path+" "+str(label))        eval_txt.write("n")train_txt.close()eval_txt.close()

2.3、定义数据集MyDataset


创建PaddlePaddle高层API—Dataloder可直接读入的数据集格式

In [7]

import randomimport iofrom paddle.io import Datasetfrom paddle.vision.transforms import transforms as Tfrom PIL import Image as PilImageimport numpy as npclass MyDataset(Dataset):    """    数据集定义    """    def __init__(self, mode, dataset_path):        """        构造函数        """        self.image_size = IMAGE_SIZE        self.mode = mode.lower()        self.dataset_path = dataset_path                assert self.mode in ['train', 'test', 'eval'],             "mode should be 'train' or 'test' or 'eval', but got {}".format(self.mode)                self.train_images = []        self.label_list = []        with open(os.path.join(self.dataset_path, ('{}.txt'.format(self.mode))), 'r') as f:                        for line in tqdm(f.readlines()):                image, label = line.strip().split(' ')                                img = PilImage.open(image)                self.train_images.append(image)                self.label_list.append(label)            def _load_img(self, path, color_mode='rgb', transforms=[]):        """        统一的图像处理接口封装,用于规整图像大小和通道        """        with open(path, 'rb') as f:            img = PilImage.open(io.BytesIO(f.read()))            if color_mode == 'grayscale':                # if image is not already an 8-bit, 16-bit or 32-bit grayscale image                # convert it to an 8-bit grayscale image.                if img.mode not in ('L', 'I;16', 'I'):                    img = img.convert('L')            elif color_mode == 'rgba':                if img.mode != 'RGBA':                    img = img.convert('RGBA')            elif color_mode == 'rgb':                if img.mode != 'RGB':                    img = img.convert('RGB')            else:                raise ValueError('color_mode must be "grayscale", "rgb", or "rgba"')                        return T.Compose([                T.Resize(self.image_size)            ] + transforms)(img)    def __getitem__(self, idx):        """        返回 image, label        """        train_image = self._load_img(self.train_images[idx],                                      transforms=[                                         T.Transpose(),                                          T.Normalize(mean=[127.5], std=[127.5]) # 归一化处理,将0~255归一化到-1~1                                     ]) # 加载原始图像        label = self.label_list[idx] # 加载Label            # 返回image, label        train_image = np.array(train_image, dtype='float32')        label = np.array(label, dtype='float32')        return train_image, label            def __len__(self):        """        返回数据集总数        """        return len(self.train_images)# 定义训练集和验证集train_dataset = MyDataset(mode='train', dataset_path=dataset_path) # 训练数据集val_dataset = MyDataset(mode='eval', dataset_path=dataset_path) # 验证数据集
100%|██████████| 13448/13448 [00:01<00:00, 12012.05it/s]100%|██████████| 1494/1494 [00:00<00:00, 12004.41it/s]

2.4、查看数据集的具体格式,并展示一张图像和label的对应关系

In [14]

x, y = val_dataset.__getitem__(0)print(x, y)print(x.shape)print(train_dataset.__len__())with open(os.path.join(dataset_path, 'train.txt'), 'r') as f:    i = 0    for line in f.readlines():        image_path, label = line.strip().split(' ')        image = np.array(PilImage.open(image_path))            if i > 2:            break        # 进行图片的展示        plt.figure()        plt.title(label)        plt.imshow(image.astype('uint8'))        plt.axis('off')        plt.show()        i = i + 1

3、基于高层API自定义模型结构


模型结构可自行修改以获得更好的效果。

In [86]

import paddleimport paddle.nn as nnimport paddle.nn.functional as Fclass My_Model(nn.Layer):    def __init__(self, num_classes):        super(My_Model, self).__init__()        self.conv1 = paddle.nn.Conv2D(in_channels=3, out_channels=32, kernel_size=(3, 3))        self.pool1 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)        self.conv2 = paddle.nn.Conv2D(in_channels=32, out_channels=64, kernel_size=(3,3))        self.pool2 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)        self.conv3 = paddle.nn.Conv2D(in_channels=64, out_channels=32, kernel_size=(3,3))        self.pool3 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)                self.conv4 = paddle.nn.Conv2D(in_channels=32, out_channels=16, kernel_size=(3,3))        self.flatten = paddle.nn.Flatten()        self.linear1 = paddle.nn.Linear(in_features=9216, out_features=16)        self.linear2 = paddle.nn.Linear(in_features=16, out_features=1)    def forward(self, x):        x = self.conv1(x)        x = F.relu(x)        x = self.pool1(x)        x = self.conv2(x)        x = F.relu(x)        x = self.pool2(x)        x = self.conv3(x)        x = F.relu(x)        x = self.pool3(x)        x= self.conv4(x)        x = F.relu(x)        x = self.flatten(x)        x = self.linear1(x)        x = F.relu(x)        x = self.linear2(x)        return xpaddle.summary(My_Model(num_classes=1), input_size=(1,3, 224,224))

4、模型训练

4.1、配置具体模型的优化器、损失函数及其他可选项

In [89]

import paddleclass SaveBestModel(paddle.callbacks.Callback):    def __init__(self, target=0.5, path='./best_model', verbose=0):        self.target = target        self.epoch = None        self.path = path    def on_epoch_end(self, epoch, logs=None):        self.epoch = epoch    def on_eval_end(self, logs=None):        if logs.get('loss')[0] < self.target:            self.target = logs.get('loss')[0]            self.model.save(self.path)            print('best model is loss {} at epoch {}'.format(self.target, self.epoch))callback_visualdl = paddle.callbacks.VisualDL(log_dir='./')callback_savebestmodel = SaveBestModel(target=1, path='./model')callbacks = [callback_visualdl, callback_savebestmodel]# 模型初始化model = paddle.Model(My_Model(num_classes=1)) # 线性回归模型# 优化器optim = paddle.optimizer.Momentum(learning_rate=0.0001,                                  momentum=0.9,                                  parameters=model.parameters())# 损失函数loss = paddle.nn.MSELoss()model.prepare(optimizer=optim, loss=loss) # 线性回归模型一定不能用交叉熵,因为这个自带softmax,需要指定输出类别# 用 DataLoader 实现数据加载train_loader = paddle.io.DataLoader(train_dataset, places=paddle.CUDAPlace(0), batch_size=64)eval_loader = paddle.io.DataLoader(val_dataset, places=paddle.CUDAPlace(0), batch_size= 64)

4.2、模型训练

In [9]

model.fit(train_loader,           eval_loader,           epochs=5,           callbacks=callbacks,          verbose=1)

4.3、保存模型


这里直接保存模型为可本地部署的形式。

In [10]

# training=True时,只会保存优化器参数和模型参数# training=False时,会保存模型结构、参数和优化器结构model.save("./model_dir/model", training=False)

5、边缘端预测


这里的预测部分和本地预测代码相同,需要保证输入图像的预处理和训练时对齐。

In [90]

import cv2import numpy as npfrom paddle.inference import Configfrom paddle.inference import create_predictor# ————————————————图像预处理函数————————————————def resize(img, target_size):    """ resize """    percent = float(target_size) / min(img.shape[0], img.shape[1])    resized_width = int(round(img.shape[1] * percent))    resized_height = int(round(img.shape[0] * percent))    resized_short = cv2.resize(img, (resized_width, resized_height))    resized = cv2.resize(resized_short, (target_size, target_size))    return resizeddef preprocess(img, target_size):    mean = [127.5, 127.5, 127.5]    std = [127.5, 127.5, 127.5]    # resize    img = resize(img, target_size)    # bgr-> rgb && hwc->chw    img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1))    img_mean = np.array(mean).reshape((3, 1, 1))    img_std = np.array(std).reshape((3, 1, 1))    img -= img_mean    img /= img_std    return img[np.newaxis, :]#——————————————————————模型配置、预测相关函数——————————————————————————def predict_config(model_file, params_file):    # 根据预测部署的实际情况,设置Config    config = Config()    # 读取模型文件    config.set_prog_file(model_file)    config.set_params_file(params_file)    # Config默认是使用CPU预测,若要使用GPU预测,需要手动开启,设置运行的GPU卡号和分配的初始显存。    config.enable_use_gpu(500, 0)    # 可以设置开启IR优化、开启内存优化。    config.switch_ir_optim()    config.enable_memory_optim()    predictor = create_predictor(config)    return predictordef predict(image, predictor, target_size):    img = preprocess(image, target_size)    input_names = predictor.get_input_names()    input_tensor = predictor.get_input_handle(input_names[0])    input_tensor.reshape(img.shape)    input_tensor.copy_from_cpu(img.copy())    # 执行Predictor    predictor.run()    # 获取输出    output_names = predictor.get_output_names()    output_tensor = predictor.get_output_handle(output_names[0])    output_data = output_tensor.copy_to_cpu()    print("output_names", output_names)    print("output_tensor", output_tensor)    print("output_data", output_data)    return output_dataif __name__ == '__main__':    model_file = "model_dir/model.pdmodel"    params_file = "model_dir/model.pdiparams"        import random    # image = cv2.imread("data/img/7419.jpg")    # image = cv2.imread("data/img/8891.jpg")    image = cv2.imread("data/img/{}.jpg".format(random.randint(0,5000)))        predictor = predict_config(model_file, params_file)    res = predict(image, predictor, target_size=224)    # 进行图片的展示    plt.figure()    plt.title(res)    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)    plt.imshow(image.astype('uint8'))    plt.axis('on')    plt.show()
output_names ['relu_0.tmp_0']output_tensor output_data [[0.03796072]]
--- Running analysis [ir_graph_build_pass]--- Running analysis [ir_graph_clean_pass]--- Running analysis [ir_analysis_pass]--- Running IR pass [is_test_pass]--- Running IR pass [simplify_with_basic_ops_pass]--- Running IR pass [conv_affine_channel_fuse_pass]--- Running IR pass [conv_eltwiseadd_affine_channel_fuse_pass]--- Running IR pass [conv_bn_fuse_pass]--- Running IR pass [conv_eltwiseadd_bn_fuse_pass]--- Running IR pass [embedding_eltwise_layernorm_fuse_pass]--- Running IR pass [multihead_matmul_fuse_pass_v2]--- Running IR pass [squeeze2_matmul_fuse_pass]--- Running IR pass [reshape2_matmul_fuse_pass]--- Running IR pass [flatten2_matmul_fuse_pass]--- Running IR pass [map_matmul_v2_to_mul_pass]I1117 16:08:14.154837   128 fuse_pass_base.cc:57] ---  detected 2 subgraphs--- Running IR pass [map_matmul_v2_to_matmul_pass]--- Running IR pass [map_matmul_to_mul_pass]--- Running IR pass [fc_fuse_pass]I1117 16:08:14.155347   128 fuse_pass_base.cc:57] ---  detected 2 subgraphs--- Running IR pass [fc_elementwise_layernorm_fuse_pass]--- Running IR pass [conv_elementwise_add_act_fuse_pass]--- Running IR pass [conv_elementwise_add2_act_fuse_pass]--- Running IR pass [conv_elementwise_add_fuse_pass]--- Running IR pass [transpose_flatten_concat_fuse_pass]--- Running IR pass [runtime_context_cache_pass]--- Running analysis [ir_params_sync_among_devices_pass]I1117 16:08:14.158038   128 ir_params_sync_among_devices_pass.cc:45] Sync params from CPU to GPU--- Running analysis [adjust_cudnn_workspace_size_pass]--- Running analysis [inference_op_replace_pass]--- Running analysis [memory_optimize_pass]I1117 16:08:14.159536   128 memory_optimize_pass.cc:214] Cluster name : x  size: 38535168I1117 16:08:14.159554   128 memory_optimize_pass.cc:214] Cluster name : relu_0.tmp_0  size: 403734528I1117 16:08:14.159556   128 memory_optimize_pass.cc:214] Cluster name : relu_3.tmp_0  size: 2359296I1117 16:08:14.159559   128 memory_optimize_pass.cc:214] Cluster name : pool2d_0.tmp_0  size: 100933632--- Running analysis [ir_graph_to_program_pass]I1117 16:08:14.166565   128 analysis_predictor.cc:717] ======= optimize end =======I1117 16:08:14.166777   128 naive_executor.cc:98] ---  skip [feed], feed -> xI1117 16:08:14.167583   128 naive_executor.cc:98] ---  skip [relu_0.tmp_0], fetch -> fetch

6、车道线自动驾驶效果展示(第一人称视角)

【车道线+自动驾驶】用Paddle高层API实现车道线转角回归模型+部署 - 创想鸟

以上就是【车道线+自动驾驶】用Paddle高层API实现车道线转角回归模型+部署的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/53248.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月9日 08:59:30
下一篇 2025年11月9日 09:03:52

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    000
  • 如何用 CSS Paint API 实现倾斜的斑马线间隔圆环?

    实现斑马线边框样式:探究 css paint api 本文将探究如何使用 css paint api 实现倾斜的斑马线间隔圆环。 问题: 给定一个有多个圆圈组成的斑马线图案,如何使用 css 实现倾斜的斑马线间隔圆环? 答案: 立即学习“前端免费学习笔记(深入)”; 使用 css paint api…

    2025年12月24日
    000
  • 如何使用CSS Paint API实现倾斜斑马线间隔圆环边框?

    css实现斑马线边框样式 想定制一个带有倾斜斑马线间隔圆环的边框?现在使用css paint api,定制任何样式都轻而易举。 css paint api 这是一个新的css特性,允许开发人员创建自定义形状和图案,其中包括斑马线样式。 立即学习“前端免费学习笔记(深入)”; 实现倾斜斑马线间隔圆环 …

    2025年12月24日
    100

发表回复

登录后才能评论
关注微信