基于MobileNetV2的柠檬外观分类实践

本实践基于广岛Quest2020柠檬外观分类赛题,用飞桨2.0搭建卷积神经网络。先解压数据集,用train.csv训练,划分80%为训练集、20%为验证集。经数据预处理、构建数据集、配置visualdl后,选用MobileNetV2模型,以SGD优化器等训练,最终验证集准确率达98%-100%,可通过调优提升性能。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

基于mobilenetv2的柠檬外观分类实践 - 创想鸟

项目的赛题源自比赛广岛Quest2020

柠檬外观分类使用的图像数据(第1阶段)用广岛县的柠檬形象挑战外观分类。


比赛链接https://signate.jp/competitions/431


1.任务描述

如何根据据图像的视觉内容为图像赋予一个语义类别是图像分类的目标,也是图像检索、图像内容分析和目标识别等问题的基础。

本实践旨在通过一个柠檬分类的案列,让大家理解和掌握如何使用飞桨2.0搭建一个卷积神经网络。

特别提示:本实践所用数据集均来自互联网,请勿用于商务用途。

解压文件,使用train.csv训练,测试使用分出来的验证集。最后以在验证集上的准确率作为最终分数。

2.调优

思考并动手进行调优,以在验证集上的准确率为评价指标,验证集上准确率越高,得分越高!模型大家可以更换,调参技巧任选,代码需要大家自己调通。

解压数据集

In [1]

!cd data $$/!unzip -oq /home/aistudio/data/data73045/lemon_homework.zip !unzip -oq /home/aistudio/lemon_homework/lemon_lesson.zip -d /home/aistudio/lemon_homework/!unzip -oq /home/aistudio/lemon_homework/lemon_lesson/test_images.zip -d /home/aistudio/lemon_homework/!unzip -oq /home/aistudio/lemon_homework/lemon_lesson/train_images.zip -d /home/aistudio/lemon_homework/

   

第一步 观察数据格式 了解赛题目的

题目分析

1.题意 给出了训练集柠檬的图片,让我们输出测试集的图片的规格

2.数据集模样

基于MobileNetV2的柠檬外观分类实践 - 创想鸟        

3.关键信息 第一列为id 图片的路径

第二列为label 图片的等级

以下为题目当中给出的:

有四个等级:0:優良、1:良、2:加工品、3:規格外。

基于MobileNetV2的柠檬外观分类实践 - 创想鸟    

第二步导入必要的库,数据解析并存储

代码逻辑:

导入库->读取数据->打乱数据->划分数据->数据预处理

In [2]

# 导入所需要的库from sklearn.utils import shuffleimport osimport pandas as pdimport numpy as npfrom PIL import Imageimport paddleimport paddle.nn as nnfrom paddle.io import Datasetimport paddle.vision.transforms as Timport paddle.nn.functional as Ffrom paddle.metric import Accuracy #在python中运行代码经常会遇到的情况是——代码可以正常运行但是会提示警告,有时特别讨厌。#那么如何来控制警告输出呢?其实很简单,python通过调用warnings模块中定义的warn()函数来发出警告。我们可以通过警告过滤器进行控制是否发出警告消息。import warningswarnings.filterwarnings("ignore")# 读取数据train_images = pd.read_csv('lemon_homework/train.csv', usecols=['id','class_num'])# labelshuffling 自定义标签打乱def labelShuffling(dataFrame, groupByName = 'class_num'):    groupDataFrame = dataFrame.groupby(by=[groupByName])    labels = groupDataFrame.size()    print("length of label is ", len(labels))    maxNum = max(labels)    lst = pd.DataFrame()    for i in range(len(labels)):        print("Processing label  :", i)        tmpGroupBy = groupDataFrame.get_group(i)        createdShuffleLabels = np.random.permutation(np.array(range(maxNum))) % labels[i]        print("Num of the label is : ", labels[i])        lst=lst.append(tmpGroupBy.iloc[createdShuffleLabels], ignore_index=True)        print("Done" )    # lst.to_csv('test1.csv', index=False)    return lst# 划分训练集和校验集all_size = len(train_images)# print(all_size)train_size = int(all_size * 0.8)train_image_list = train_images[:train_size]val_image_list = train_images[train_size:]df = labelShuffling(train_image_list)df = shuffle(df)train_image_path_list = df['id'].valueslabel_list = df['class_num'].valueslabel_list = paddle.to_tensor(label_list, dtype='int64')train_label_list = paddle.nn.functional.one_hot(label_list, num_classes=4)val_image_path_list = val_image_list['id'].valuesval_label_list = val_image_list['class_num'].valuesval_label_list = paddle.to_tensor(val_label_list, dtype='int64')val_label_list = paddle.nn.functional.one_hot(val_label_list, num_classes=4)# 定义数据预处理data_transforms = T.Compose([    T.Resize(size=(224, 224)),    T.RandomHorizontalFlip(224),    T.RandomVerticalFlip(224),    T.RandomRotation(90),    T.Transpose(),    # HWC -> CHW    T.Normalize(        mean=[0.31169346, 0.25506335, 0.12432463],      #归一化          std=[0.34042713, 0.29819837, 0.1375536],        to_rgb=True)            #计算过程:output[channel] = (input[channel] - mean[channel]) / std[channel]])

       

length of label is  4Processing label  : 0Num of the label is :  234DoneProcessing label  : 1Num of the label is :  156DoneProcessing label  : 2Num of the label is :  136DoneProcessing label  : 3Num of the label is :  123Done

       

第三步 构建Dataset

In [3]

# 构建Datasetclass MyDataset(paddle.io.Dataset):    """    步骤一:继承paddle.io.Dataset类    """    def __init__(self, train_img_list, val_img_list,train_label_list,val_label_list, mode='train'):        """        步骤二:实现构造函数,定义数据读取方式,划分训练和测试数据集        """        super(MyDataset, self).__init__()        self.img = []        self.label = []        # 借助pandas读csv的库        self.train_images = train_img_list        self.test_images = val_img_list        self.train_label = train_label_list        self.test_label = val_label_list        if mode == 'train':            # 读train_images的数据            for img,la in zip(self.train_images, self.train_label):                self.img.append('lemon_homework/train_images/'+img)                self.label.append(la)        else:            # 读test_images的数据            for img,la in zip(self.test_images, self.test_label):                self.img.append('lemon_homework/train_images/'+img)                self.label.append(la)    def load_img(self, image_path):        # 实际使用时使用Pillow相关库进行图片读取即可,这里我们对数据先做个模拟        image = Image.open(image_path).convert('RGB')        return image    def __getitem__(self, index):        """        步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)        """        image = self.load_img(self.img[index])        label = self.label[index]        # label = paddle.to_tensor(label)                return data_transforms(image).astype("float32"), paddle.nn.functional.label_smooth(label)    def __len__(self):        """        步骤四:实现__len__方法,返回数据集总数目        """        return len(self.img)#train_loadertrain_dataset = MyDataset(train_img_list=train_image_path_list, val_img_list=val_image_path_list, train_label_list=train_label_list, val_label_list=val_label_list, mode='train')train_loader = paddle.io.DataLoader(train_dataset, places=paddle.CPUPlace(), batch_size=32, shuffle=True, num_workers=0)#val_loaderval_dataset = MyDataset(train_img_list=train_image_path_list, val_img_list=val_image_path_list, train_label_list=train_label_list, val_label_list=val_label_list, mode='test')val_loader = paddle.io.DataLoader(train_dataset, places=paddle.CPUPlace(), batch_size=32, shuffle=True, num_workers=0)

   

第四步 配置visualdl

配置完之后,可以在左侧可视化页面添加日志和模型文件。

In [4]

!rm vdl/vdlrecords.model.logfrom visualdl import LogReader, LogWriterargs={    'logdir':'./vdl',    'file_name':'vdlrecords.model.log',    'iters':0,}write = LogWriter(logdir=args['logdir'], file_name=args['file_name'])#iters 初始化为0iters = args['iters'] #自定义Callbackclass Callbk(paddle.callbacks.Callback):    def __init__(self, write, iters=0):        self.write = write        self.iters = iters    def on_train_batch_end(self, step, logs):        self.iters += 1        #记录loss        self.write.add_scalar(tag="loss",step=self.iters,value=logs['loss'][0])        #记录 accuracy        self.write.add_scalar(tag="acc",step=self.iters,value=logs['acc'])

       

rm: cannot remove 'vdl/vdlrecords.model.log': No such file or directory

       

第五步 选择合适的网络并进行模型训练

定义输入->模型封装->定义优化器->配置模型->模型训练与评估

In [5]

from work.mobilenet import MobileNetV2#定义输入input_define = paddle.static.InputSpec(shape=[-1,3,224,224], dtype="float32", name="img")label_define = paddle.static.InputSpec(shape=[-1,1], dtype="int64", name="label")# 模型封装model_res = MobileNetV2(class_dim=4)model = paddle.Model(model_res,inputs=input_define,labels=label_define)# 定义优化器scheduler = paddle.optimizer.lr.LinearWarmup(        learning_rate=0.1, warmup_steps=20, start_lr=0, end_lr=0.1, verbose=True)optim = paddle.optimizer.SGD(learning_rate=scheduler, parameters=model.parameters())# optim = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())# 配置模型model.prepare(    optim,    paddle.nn.CrossEntropyLoss(soft_label=True),    Accuracy()    )# 模型训练与评估model.fit(        train_loader,        val_loader,        epochs=50,        callbacks=Callbk(write=write, iters=iters),        verbose=1,        batch_size=64,        save_dir="/home/aistudio/iterhui/" #把模型参数、优化器参数保存至自定义的文件夹        )

   

模型验证

In [6]

#模型保存model.save('Hapi_MyCNN', False)  # save for inferenceresult = model.evaluate(val_loader,batch_size=64,log_freq=100, verbose=1, num_workers=0, callbacks=Callbk(write=write, iters=iters))print(result)

       

Eval begin...The loss value printed in the log is the current batch, and the metric is the average value of previous step.step 30/30 [==============================] - loss: 0.4024 - acc: 0.9979 - 642ms/stepEval samples: 936{'loss': [0.40243444], 'acc': 0.9978632478632479}

       

验证集准确率多次运行大概在98%-100%。

以上就是基于MobileNetV2的柠檬外观分类实践的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/53791.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月9日 12:09:02
下一篇 2025年11月9日 12:13:08

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信