【PaddleHub模型贡献】一行代码实现海洋生物识别

针对海洋鱼类识别难的问题,本实践使用卷积神经网络(Convolutional Neural Network,CNN)构建深度学习模型,自动提取高质量的特征,并将训练好的模型贡献到PaddleHub,使用户只用1行代码即可实现调用,从而解决海洋鱼类识别的问题。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【paddlehub模型贡献】一行代码实现海洋生物识别 - 创想鸟

【PaddleHub模型贡献】一行代码实现海洋生物识别

海洋中的鱼类资源不仅有一定的食用价值,而且有很高的药用价值,近年来,世界各国对于海洋鱼类资源的重视程度与日俱增。在鱼类资源的开发利用中,必须对鱼类进行识别,从而了解其分布情况。但是由于鱼的种类繁多,形状大小相似,同时考虑到海底拍摄环境亮度低、场景模糊的实际情况,对鱼类资源的识别较为困难。

针对海洋鱼类识别难的问题,本实践使用卷积神经网络(Convolutional Neural Network,CNN)构建深度学习模型,自动提取高质量的特征,并将训练好的模型贡献到PaddleHub,使用户只用1行代码即可实现调用,从而解决海洋鱼类识别的问题。

接下来,让我们一起来学习如何使用百度深度学习框架飞桨来搭建卷积神经网络,实现海洋鱼类资源的识别。

一、实现原理

基础的卷积神经网络CNN由 卷积(convolution), 激活(activation)和 池化(pooling)三种结构组成。CNN输出的结果是每幅图像的特定特征空间。当处理图像分类任务时,我们会把CNN输出的特征空间作为全连接层或全连接神经网络(fully connected neural network, FCN)的输入,用全连接层来完成从输入图像到标签集的映射,即分类。当然,整个过程最重要的工作就是如何通过训练数据迭代调整网络权重,也就是后向传播算法。目前主流的卷积神经网络(CNNs),比如VGG, ResNet都是由简单的CNN调整、组合而来。

1.卷积层

卷积层会对输入的特征图(或原始数据)进行卷积操作,输出卷积后产生的特征图。卷积层是卷积神经网络的核心部分。输入到卷积层的特征图是一个三维数据,不仅有宽、高两个维度,还有通道维度上的数据,因此输入特征图和卷积核可用三维特征图表示。如下图所示,对于一个(3,6,6)的输入特征图,卷积核大小为(3,3,3),输出大小为(1,4,4),当卷积核窗口滑过输入时,卷积核与窗口内的输入元素作乘加运算,并将结果保存到输出相应的位置。

【PaddleHub模型贡献】一行代码实现海洋生物识别 - 创想鸟        

上图中卷积操作输出了一张特征图,即通道数为1的特征图,而一张特征图包含的特征数太少,在大多数计算机视觉任务中是不够的,所以需要构造多张特征图,而输入特征图的通道数又与卷积核通道数相等,一个卷积核只能产生一张特征图,因此需要构造多个卷积核。在RGB彩色图像上使用多个卷积核进行多个不同特征的提取,示意图如下:

【PaddleHub模型贡献】一行代码实现海洋生物识别 - 创想鸟        

2.激活层

如果输入变化很小,导致输出结构发生截然不同的结果,这种情况是我们不希望看到的,为了模拟更细微的变化,输入和输出数值不只是0到1,可以是0和1之间的任何数,

激活函数是用来加入非线性因素的,因为线性模型的表达力不够,所以激活层的作用可以理解为把卷积层的结果做非线性映射。

我们知道在神经网络中,对于图像,我们主要采用了卷积的方式来处理,也就是对每个像素点赋予一个权值,这个操作显然就是线性的。但是对于我们样本来说,不一定是线性可分的,为了解决这个问题,我们可以进行线性变化,或者我们引入非线性因素,解决线性模型所不能解决的问题。

这里有一些小技巧:

一般不要用sigmoid,首先试RELU,因为快,但要小心点,如果RELU失效,请用Leaky ReLU,某些情况下tanh倒是有不错的结果。

3.池化层

池化层的作用是对网络中的特征进行选择,降低特征数量,从而减少参数数量和计算开销。池化层降低了特征维的宽度和高度,也能起到防止过拟合的作用。最常见的池化操作为最大池化或平均池化。如下图所示,采用了最大池化操作,对邻域内特征点取最大值作为最后的特征值。

【PaddleHub模型贡献】一行代码实现海洋生物识别 - 创想鸟        

最常见的池化层使用大小为2×2,步长为2的滑窗操作,有时窗口尺寸为3,更大的窗口尺寸比较罕见,因为过大的滑窗会急剧减少特征的数量,造成过多的信息损失。

需要注意的是:池化层没有参数、池化层没有参数、池化层没有参数

4.批归一化层

批归一化层是由Google的DeepMind团队提出的在深度网络各层之间进行数据批量归一化的算法,以解决深度神经网络内部协方差偏移问题,使用网络训练过程中各层梯度的变化趋于稳定,并使网络在训练时能更快地收敛。

二、数据集简介

本次实践所使用的是fish4knowledge公开数据集。该数据集是台湾电力公司、台湾海洋研究所和ken丁国家公园在2010年10月1日至2013年9月30日期间,在台湾南湾海峡、兰屿岛和胡比湖的水下观景台收集的鱼类图像数据集,包括23类鱼种,共27370张鱼的图像。

该数据集已上传至AI Studio:https://aistudio.baidu.com/aistudio/datasetdetail/75102

【PaddleHub模型贡献】一行代码实现海洋生物识别 - 创想鸟        

23个类别分别是:

Dascyllus reticulatus 网纹宅泥鱼

Plectroglyphidodon dickii 迪克氏固曲齿鲷

Chromis chrysura 长棘光鳃鱼

Amphiprion clarkia 双带小丑鱼

Chaetodon lunulatus 弓月蝴蝶鱼

Chaetodon trifascialis 川纹蝴蝶鱼

Myripristis kuntee 康德锯鳞鱼

Acanthurus nigrofuscus 双斑刺尾鱼

Hemigymnus fasciatus 横带粗唇鱼

Neoniphon samara 莎姆金鳞鱼

Abudefduf vaigiensis 五带豆娘鱼

Canthigaster valentine 黑马鞍鲀鱼

Pomacentrus moluccensis 摩鹿加雀鲷

Zebrasoma scopas 黑三角倒吊鱼

Hemigymnus melapterus 黑鳍粗唇鱼

Lutjanus fulvus 黄足笛鲷

Scolopsis bilineata 双线眶棘鲈

Scaridae 鹦嘴鱼

Pempheris vanicolensis 黑缘单鳍鱼

Zanclus cornutus 镰鱼

Ncoglyphidodon nigroris 黑嘴雀鱼

Balistapus undulates 黄纹炮弹鱼

Siganus fuscescens 褐蓝子鱼

解压数据集:

In [ ]

!unzip data/data75102/fish_image.zip -d /home/aistudio/

   

三、模型开发

本项目基于PaddleX开发,使用ResNet50_vd_ssld。

安装PaddleX:

In [ ]

!pip install paddlex

   

1.划分数据集

按训练集:验证集:测试集=7:2:1的比例划分

In [ ]

!paddlex --split_dataset --format ImageNet --dataset_dir '/home/aistudio/fish_image' --val_value 0.2 --test_value 0.1

       

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/setuptools/depends.py:2: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses  import impDataset Split Done.Train samples: 19150Eval samples: 5454Test samples: 2720Split files saved in /home/aistudio/fish_image

       

2.数据预处理

导入必要的资源库:

In [ ]

import matplotlibmatplotlib.use('Agg') import osos.environ['CUDA_VISIBLE_DEVICES'] = '0'import paddlex as pdx

   

图像归一化并对训练集做数据增强:

In [ ]

from paddlex.cls import transformstrain_transforms = transforms.Compose([    transforms.RandomCrop(crop_size=224),    transforms.RandomHorizontalFlip(),    transforms.Normalize()])eval_transforms = transforms.Compose([    transforms.ResizeByShort(short_size=256),    transforms.CenterCrop(crop_size=224),    transforms.Normalize()])

   

定义数据迭代器:

In [ ]

train_dataset = pdx.datasets.ImageNet(    data_dir='fish_image',    file_list='fish_image/train_list.txt',    label_list='fish_image/labels.txt',    transforms=train_transforms,    shuffle=True)eval_dataset = pdx.datasets.ImageNet(    data_dir='fish_image',    file_list='fish_image/val_list.txt',    label_list='fish_image/labels.txt',    transforms=eval_transforms)

       

2021-03-17 11:30:53 [INFO]Starting to read file list from dataset...2021-03-17 11:30:54 [INFO]19150 samples in file fish_image/train_list.txt2021-03-17 11:30:54 [INFO]Starting to read file list from dataset...2021-03-17 11:30:54 [INFO]5454 samples in file fish_image/val_list.txt

       

3.模型训练

如果使用的是普通版环境,请把train_batch_size调小至32-,否则会内存溢出。

In [ ]

num_classes = len(train_dataset.labels)model = pdx.cls.ResNet50_vd_ssld(num_classes=num_classes)model.train(num_epochs = 10,            save_interval_epochs = 2,            train_dataset = train_dataset,            train_batch_size = 256,            eval_dataset = eval_dataset,            learning_rate = 0.025,            warmup_steps = 128,            warmup_start_lr = 0.0001,            lr_decay_epochs=[2, 4, 8],            lr_decay_gamma = 0.025,                save_dir='/home/aistudio/output',            use_vdl=True)

   

2021-03-17 11:45:52 [INFO][TRAIN] Epoch=10/10, Step=60/74, loss=0.17589, acc1=0.949219, acc5=0.996094, lr=0.0, time_each_step=0.86s, eta=0:0:402021-03-17 11:45:54 [INFO][TRAIN] Epoch=10/10, Step=62/74, loss=0.127886, acc1=0.960938, acc5=0.992188, lr=0.0, time_each_step=0.86s, eta=0:0:382021-03-17 11:45:55 [INFO][TRAIN] Epoch=10/10, Step=64/74, loss=0.203243, acc1=0.9375, acc5=0.996094, lr=0.0, time_each_step=0.86s, eta=0:0:362021-03-17 11:45:57 [INFO][TRAIN] Epoch=10/10, Step=66/74, loss=0.22026, acc1=0.929688, acc5=0.992188, lr=0.0, time_each_step=0.84s, eta=0:0:342021-03-17 11:45:59 [INFO][TRAIN] Epoch=10/10, Step=68/74, loss=0.164074, acc1=0.953125, acc5=0.988281, lr=0.0, time_each_step=0.83s, eta=0:0:332021-03-17 11:46:00 [INFO][TRAIN] Epoch=10/10, Step=70/74, loss=0.135595, acc1=0.957031, acc5=0.992188, lr=0.0, time_each_step=0.82s, eta=0:0:312021-03-17 11:46:02 [INFO][TRAIN] Epoch=10/10, Step=72/74, loss=0.161868, acc1=0.957031, acc5=1.0, lr=0.0, time_each_step=0.81s, eta=0:0:292021-03-17 11:46:03 [INFO][TRAIN] Epoch=10/10, Step=74/74, loss=0.196277, acc1=0.945312, acc5=0.984375, lr=0.0, time_each_step=0.81s, eta=0:0:282021-03-17 11:46:03 [INFO][TRAIN] Epoch 10 finished, loss=0.157934, acc1=0.955236, acc5=0.991976, lr=0.0 .2021-03-17 11:46:03 [INFO]Start to evaluating(total_samples=5454, total_steps=22)...100%|██████████| 22/22 [00:24<00:00,  1.12s/it]2021-03-17 11:46:28 [INFO][EVAL] Finished, Epoch=10, acc1=0.979465, acc5=0.994499 .

   

4.查看模型预测效果

In [ ]

import cv2import matplotlib.pyplot as plt# 加载模型print('**************************************加载模型*****************************************')model = pdx.load_model('output/best_model')# 显示图片img = cv2.imread('fish_image/Plectroglyphidodon_dickii/fish_000013120001_01106.png')b,g,r = cv2.split(img)img = cv2.merge([r,g,b])%matplotlib inlineplt.imshow(img)# 预测result = model.predict('fish_image/Plectroglyphidodon_dickii/fish_000013120001_01106.png', topk=3)print('**************************************预测*****************************************')print(result[0])

       

**************************************加载模型*****************************************2021-03-17 11:48:49 [INFO]Model[ResNet50_vd_ssld] loaded.

       

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:2349: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working  if isinstance(obj, collections.Iterator):/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:2366: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working  return list(data) if isinstance(data, collections.MappingView) else data

       

**************************************预测*****************************************

       


       

{'category_id': 16, 'category': 'Plectroglyphidodon_dickii', 'score': 0.9853951}

       


       

               

四、将模型封装成PaddleHub的Module

1.导出inference模型

在这里我们需要将PaddleX训练得到的模型转换成可预测部署的模型

参数 说明

–model_dirinference模型所在的文件地址,文件包括:.pdparams、.pdopt、.pdmodel、.json和.yml–save_dir导出inference模型,文件将包括:__model__、__params__和model.ymlIn [ ]

!paddlex --export_inference --model_dir=output/best_model --save_dir=./inference_model/ResNet50_vd_ssld

       

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/setuptools/depends.py:2: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses  import impW0317 11:51:36.167836  3057 device_context.cc:362] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1W0317 11:51:36.172704  3057 device_context.cc:372] device: 0, cuDNN Version: 7.6.2021-03-17 11:51:41 [INFO]Model[ResNet50_vd_ssld] loaded.2021-03-17 11:51:42 [INFO]Model for inference deploy saved in ./inference_model/ResNet50_vd_ssld.

       

2.模型转换

PaddleX模型可以快速转换成PaddleHub模型,只需要用下面这一句命令即可:

In [ ]

!hub convert --model_dir inference_model/ResNet50_vd_ssld               --module_name MarineBiometrics               --module_version 1.0.0               --output_dir outputs

   

转换成功后的模型保存在outputs文件夹下,我们解压一下:

In [ ]

!gzip -dfq /home/aistudio/outputs/MarineBiometrics.tar.gz!tar -xf /home/aistudio/outputs/MarineBiometrics.tar

   

五、模型预测

安装我们刚刚转换好的Module:

In [ ]

# 安装Module!hub install MarineBiometrics

   In [ ]

# 查看该Module的基本信息!hub show MarineBiometrics

       

+---------------+----------------------------------------+|  ModuleName   |MarineBiometrics                        |+---------------+----------------------------------------+|    Version    |1.0.0                                   |+---------------+----------------------------------------+|    Summary    |The model uses convolution neural networ||               |k to tell you the key to identify marine||               | fish, so that anyone can call out the n||               |ames of the creatures.                  |+---------------+----------------------------------------+|    Author     |郑博培、彭兆帅                                 |+---------------+----------------------------------------+| Author-Email  |2733821739@qq.com, 1084667371@qq.com    |+---------------+----------------------------------------+|   Location    |MarineBiometrics                        |+---------------+----------------------------------------+

       

1.通过API的方式调用

预测单张图片:

【PaddleHub模型贡献】一行代码实现海洋生物识别 - 创想鸟    In [ ]

import cv2import paddlehub as hubmodule = hub.Module(name="MarineBiometrics")images = [cv2.imread('fish_image/Plectroglyphidodon_dickii/fish_000013120001_01102.png')]# execute predict and print the resultresults = module.predict(images=images)for result in results:    print(result)

       

[2021-03-17 12:04:55,311] [ WARNING] - The _initialize method in HubModule will soon be deprecated, you can use the __init__() to handle the initialization of the object

       

[{'category_id': 16, 'category': 'Plectroglyphidodon_dickii', 'score': 0.9932127}]

       

2.将模型部署至服务器

下面,我们只需要使用hub serving命令即可完成模型的一键部署,对此命令的说明如下:

$ hub serving start --modules/-m [Module1==Version1, Module2==Version2, ...]              --port/-p XXXX             -config/-c XXXX

       modules/-m PaddleHub Serving预安装模型,以多个Module==Version键值对的形式列出。当不指定Version时,默认选择最新版本port/-p 服务端口,默认为8866config/-c 使用配置文件配置模型

因此,我们仅需要一行代码即可完成模型的部署,如下(注:AIStudio上要再终端运行):

$ hub serving start -m MarineBiometrics

       

【PaddleHub模型贡献】一行代码实现海洋生物识别 - 创想鸟        

等待模型加载后,此预训练模型就已经部署在机器上了。

在模型安装的同时,会生成一个客户端请求示例,存放在模型安装目录,默认为${HUB_HOME}/.paddlehub/modules,对于此例,我们可以在~/.paddlehub/modules/MarineBiometrics找到此客户端示例serving_client_demo.py,代码如下:

输入多张图片:

【PaddleHub模型贡献】一行代码实现海洋生物识别 - 创想鸟 【PaddleHub模型贡献】一行代码实现海洋生物识别 - 创想鸟    In [24]

# coding: utf8import requestsimport jsonimport cv2import base64def cv2_to_base64(image):    data = cv2.imencode('.jpg', image)[1]    return base64.b64encode(data.tostring()).decode('utf8')if __name__ == '__main__':    # 获取图片的base64编码格式    img1 = cv2_to_base64(cv2.imread("fish_image/Lutjanus_fulvus/fish_000010519594_03501.png"))    img2 = cv2_to_base64(cv2.imread("fish_image/Chromis_chrysura/fish_000013160001_01168.png"))    data = {'images': [img1, img2]}    # 指定content-type    headers = {"Content-type": "application/json"}    # 发送HTTP请求    url = "http://127.0.0.1:8866/predict/MarineBiometrics"    r = requests.post(url=url, headers=headers, data=json.dumps(data))    # 打印预测结果    print(r.json()["results"])

       

[[{'category': 'Lutjanus_fulvus', 'category_id': 11, 'score': 0.9962420463562012}], [{'category': 'Chromis_chrysura', 'category_id': 7, 'score': 0.9983481168746948}]]

       

六、总结与升华

全世界大约有两千万以观察海洋生物为目的的潜水者。在每次潜水结束后,大家谈论的主要话题总是观察到的动植物。但是像“刚才看见的那个叫什么?”这样的问题,答案总是无人知晓。因为在看到生物的那一刻,我们手边没有合适的工具帮助鉴别,而我们也没有扎实的生物和分类学知识基础。为弥补这一遗憾,海洋生物识别这一模型就应运而生了。

个人简介

北京联合大学 机器人学院 自动化专业 2018级 本科生 郑博培

百度飞桨开发者技术专家 PPDE

百度飞桨官方帮帮团、答疑团成员

深圳柴火创客空间 认证会员

百度大脑 智能对话训练师

阿里云人工智能、DevOps助理工程师

我在AI Studio上获得至尊等级,点亮9个徽章,来互关呀!!!
https://aistudio.baidu.com/aistudio/personalcenter/thirdview/147378

【PaddleHub模型贡献】一行代码实现海洋生物识别 - 创想鸟        

以上就是【PaddleHub模型贡献】一行代码实现海洋生物识别的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/53869.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月9日 12:38:32
下一篇 2025年11月9日 12:39:21

相关推荐

  • soul怎么发长视频瞬间_Soul长视频瞬间发布方法

    可通过分段发布、格式转换或剪辑压缩三种方法在Soul上传长视频。一、将长视频用相册编辑功能拆分为多个30秒内片段,依次发布并标注“Part 1”“Part 2”保持连贯;二、使用“格式工厂”等工具将视频转为MP4(H.264)、分辨率≤1080p、帧率≤30fps、大小≤50MB,适配平台要求;三、…

    2025年12月6日 软件教程
    500
  • 云闪付怎么快速赚取积点_云闪付积点快速获取方法

    通过微信小程序用云闪付支付可日赚692积点;62VIP会员消费满10元返积点,月上限3000;转账超1000元得2积点,还款超100元得10积点,每月各限3笔;扫本人收款码支付5元以上每笔得10积点,日限3笔;改定位至杭州领“浙里有优惠”活动卡可得2025积点。 如果您在使用云闪付时希望快速积累积点…

    2025年12月6日 软件教程
    600
  • 天猫app淘金币抵扣怎么使用

    在天猫app购物时,淘金币是一项能够帮助你节省开支的实用功能。掌握淘金币的抵扣使用方法,能让你以更实惠的价格买到心仪商品。 当你选好商品并准备下单时,记得查看商品页面是否支持淘金币抵扣。如果该商品支持此项功能,在提交订单的页面会明确显示相关提示。你会看到淘金币的具体抵扣比例——通常情况下,淘金币可按…

    2025年12月6日 软件教程
    500
  • Pboot插件缓存机制的详细解析_Pboot插件缓存清理的命令操作

    插件功能异常或页面显示陈旧内容可能是缓存未更新所致。PbootCMS通过/runtime/cache/与/runtime/temp/目录缓存插件配置、模板解析结果和数据库查询数据,提升性能但影响调试。解决方法包括:1. 手动删除上述目录下所有文件;2. 后台进入“系统工具”-“缓存管理”,勾选插件、…

    2025年12月6日 软件教程
    300
  • Word2013如何插入SmartArt图形_Word2013SmartArt插入的视觉表达

    答案:可通过四种方法在Word 2013中插入SmartArt图形。一、使用“插入”选项卡中的“SmartArt”按钮,选择所需类型并插入;二、从快速样式库中选择常用模板如组织结构图直接应用;三、复制已有SmartArt图形到目标文档后调整内容与格式;四、将带项目符号的文本选中后右键转换为Smart…

    2025年12月6日 软件教程
    000
  • 《kk键盘》一键发图开启方法

    如何在kk键盘中开启一键发图功能? 1、打开手机键盘,找到并点击“kk”图标。 2、进入工具菜单后,选择“一键发图”功能入口。 3、点击“去开启”按钮,跳转至无障碍服务设置页面。 4、在系统通用设置中,进入“已下载的应用”列表。 j2me3D游戏开发简单教程 中文WORD版 本文档主要讲述的是j2m…

    2025年12月6日 软件教程
    100
  • 怎样用免费工具美化PPT_免费美化PPT的实用方法分享

    利用KIMI智能助手可免费将PPT美化为科技感风格,但需核对文字准确性;2. 天工AI擅长优化内容结构,提升逻辑性,适合高质量内容需求;3. SlidesAI支持语音输入与自动排版,操作便捷,利于紧急场景;4. Prezo提供多种模板,自动生成图文并茂幻灯片,适合学生与初创团队。 如果您有一份内容完…

    2025年12月6日 软件教程
    000
  • Pages怎么协作编辑同一文档 Pages多人实时协作的流程

    首先启用Pages共享功能,点击右上角共享按钮并选择“添加协作者”,设置为可编辑并生成链接;接着复制链接通过邮件或社交软件发送给成员,确保其使用Apple ID登录iCloud后即可加入编辑;也可直接在共享菜单中输入邮箱地址定向邀请,设定编辑权限后发送;最后在共享面板中管理协作者权限,查看实时在线状…

    2025年12月6日 软件教程
    100
  • 哔哩哔哩的视频卡在加载中怎么办_哔哩哔哩视频加载卡顿解决方法

    视频加载停滞可先切换网络或重启路由器,再清除B站缓存并重装应用,接着调低播放清晰度并关闭自动选分辨率,随后更改播放策略为AVC编码,最后关闭硬件加速功能以恢复播放。 如果您尝试播放哔哩哔哩的视频,但进度条停滞在加载状态,无法继续播放,这通常是由于网络、应用缓存或播放设置等因素导致。以下是解决此问题的…

    2025年12月6日 软件教程
    000
  • REDMI K90系列正式发布,售价2599元起!

    10月23日,redmi k90系列正式亮相,推出redmi k90与redmi k90 pro max两款新机。其中,redmi k90搭载骁龙8至尊版处理器、7100mah大电池及100w有线快充等多项旗舰配置,起售价为2599元,官方称其为k系列迄今为止最完整的标准版本。 图源:REDMI红米…

    2025年12月6日 行业动态
    200
  • 买家网购苹果手机仅退款不退货遭商家维权,法官调解后支付货款

    10 月 24 日消息,据央视网报道,近年来,“仅退款”服务逐渐成为众多网购平台的常规配置,但部分消费者却将其当作“免费试用”的手段,滥用规则谋取私利。 江苏扬州市民李某在某电商平台购买了一部苹果手机,第二天便以“不想要”为由在线申请“仅退款”,当时手机尚在物流运输途中。第三天货物送达后,李某签收了…

    2025年12月6日 行业动态
    000
  • Linux中如何安装Nginx服务_Linux安装Nginx服务的完整指南

    首先更新系统软件包,然后通过对应包管理器安装Nginx,启动并启用服务,开放防火墙端口,最后验证欢迎页显示以确认安装成功。 在Linux系统中安装Nginx服务是搭建Web服务器的第一步。Nginx以高性能、低资源消耗和良好的并发处理能力著称,广泛用于静态内容服务、反向代理和负载均衡。以下是在主流L…

    2025年12月6日 运维
    000
  • 当贝X5S怎样看3D

    当贝X5S观看3D影片无立体效果时,需开启3D模式并匹配格式:1. 播放3D影片时按遥控器侧边键,进入快捷设置选择3D模式;2. 根据片源类型选左右或上下3D格式;3. 可通过首页下拉进入电影专区选择3D内容播放;4. 确认片源为Side by Side或Top and Bottom格式,并使用兼容…

    2025年12月6日 软件教程
    100
  • Linux journalctl与systemctl status结合分析

    先看 systemctl status 确认服务状态,再用 journalctl 查看详细日志。例如 nginx 启动失败时,systemctl status 显示 Active: failed,journalctl -u nginx 发现端口 80 被占用,结合两者可快速定位问题根源。 在 Lin…

    2025年12月6日 运维
    100
  • 华为新机发布计划曝光:Pura 90系列或明年4月登场

    近日,有数码博主透露了华为2025年至2026年的新品规划,其中pura 90系列预计在2026年4月发布,有望成为华为新一代影像旗舰。根据路线图,华为将在2025年底至2026年陆续推出mate 80系列、折叠屏新机mate x7系列以及nova 15系列,而pura 90系列则将成为2026年上…

    2025年12月6日 行业动态
    100
  • TikTok视频无法下载怎么办 TikTok视频下载异常修复方法

    先检查链接格式、网络设置及工具版本。复制以https://www.tiktok.com/@或vm.tiktok.com开头的链接,删除?后参数,尝试短链接;确保网络畅通,可切换地区节点或关闭防火墙;更新工具至最新版,优先选用yt-dlp等持续维护的工具。 遇到TikTok视频下载不了的情况,别急着换…

    2025年12月6日 软件教程
    100
  • Linux如何防止缓冲区溢出_Linux防止缓冲区溢出的安全措施

    缓冲区溢出可通过栈保护、ASLR、NX bit、安全编译选项和良好编码实践来防范。1. 使用-fstack-protector-strong插入canary检测栈破坏;2. 启用ASLR(kernel.randomize_va_space=2)随机化内存布局;3. 利用NX bit标记不可执行内存页…

    2025年12月6日 运维
    000
  • 2025年双十一买手机选直板机还是选折叠屏?建议看完这篇再做决定

    随着2025年双十一购物节的临近,许多消费者在选购智能手机时都会面临一个共同的问题:是选择传统的直板手机,还是尝试更具科技感的折叠屏设备?其实,这个问题的答案早已在智能手机行业的演进中悄然浮现——如今的手机市场已不再局限于“拼参数、堆配置”的初级竞争,而是迈入了以形态革新驱动用户体验升级的新时代。而…

    2025年12月6日 行业动态
    000
  • Linux如何优化系统性能_Linux系统性能优化的实用方法

    优化Linux性能需先监控资源使用,通过top、vmstat等命令分析负载,再调整内核参数如TCP优化与内存交换,结合关闭无用服务、选用合适文件系统与I/O调度器,持续按需调优以提升系统效率。 Linux系统性能优化的核心在于合理配置资源、监控系统状态并及时调整瓶颈环节。通过一系列实用手段,可以显著…

    2025年12月6日 运维
    000
  • Pboot插件数据库连接的配置教程_Pboot插件数据库备份的自动化脚本

    首先配置PbootCMS数据库连接参数,确保插件正常访问;接着创建auto_backup.php脚本实现备份功能;然后通过Windows任务计划程序或Linux Cron定时执行该脚本,完成自动化备份流程。 如果您正在开发或维护一个基于PbootCMS的网站,并希望实现插件对数据库的连接配置以及自动…

    2025年12月6日 软件教程
    000

发表回复

登录后才能评论
关注微信