24小时内、200美元复制RLHF过程,斯坦福开源「羊驼农场」

2 月底,Meta 开源了一个大模型系列 LLaMA(直译为羊驼),参数量从 70 亿到 650 亿不等,被称为 Meta 版 ChatGPT 的雏形。之后斯坦福大学、加州大学伯克利分校等机构纷纷在 LLaMA 的基础上进行「二创」,陆续推出了 Alpaca、Vicuna 等多个开源大模型,一时间「羊驼」成为 AI 圈顶流。开源社区构建的这些类 ChatGPT 模型迭代速度非常快,并且可定制性很强,被称为 ChatGPT 的开源平替。

然而,ChatGPT 之所以能在文本理解、生成、推理等方面展现出强大的能力,是因为 OpenAI 为 ChatGPT 等大模型使用了新的训练范式 ——RLHF (Reinforcement Learning from Human Feedback) ,即以强化学习的方式依据人类反馈优化语言模型。使用 RLHF 方法,大型语言模型可与人类偏好保持对齐,遵循人类意图,最小化无益、失真或偏见的输出。但 RLHF 方法依赖于大量的人工标注和评估,通常需要数周时间、花费数千美元收集人类反馈,成本高昂。

现在,推出开源模型 Alpaca 的斯坦福大学又提出了一种模拟器 ——AlpacaFarm(直译为羊驼农场)。AlpacaFarm 能在 24 小时内仅用约 200 美元复制 RLHF 过程,让开源模型迅速改善人类评估结果,堪称 RLHF 的平替。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

24小时内、200美元复制RLHF过程,斯坦福开源「羊驼农场」

AlpacaFarm 试图快速、低成本地开发从人类反馈中学习的方法。为了做到这一点,斯坦福的研究团队首先确定了研究 RLHF 方法的三个主要困难:人类偏好数据的高成本、缺乏可信赖的评估、缺乏参考实现。

为了解决这三个问题,AlpacaFarm 构建了模拟注释器、自动评估和 SOTA 方法的具体实现。目前,AlpacaFarm 项目代码已开源。

24小时内、200美元复制RLHF过程,斯坦福开源「羊驼农场」

GitHub 地址:https://github.com/tatsu-lab/alpaca_farm论文地址:https://tatsu-lab.github.io/alpaca_farm_paper.pdf

如下图所示,研究人员可以使用 AlpacaFarm 模拟器快速开发从人类反馈数据中学习的新方法,也能将已有 SOTA 方法迁移到实际的人类偏好数据上。

24小时内、200美元复制RLHF过程,斯坦福开源「羊驼农场」

模拟注释器

AlpacaFarm 基于 Alpaca 数据集的 52k 指令构建,其中 10k 指令用于微调基本的指令遵循模型,剩余的 42k 指令用于学习人类偏好和评估,并且大部分用于从模拟注释器中学习。该研究针对 RLHF 方法的注释成本、评估和验证实现三大挑战,逐一提出解决方法。

首先,为了减少注释成本,该研究为可访问 API 的 LLM(如 GPT-4、ChatGPT)创建了 prompt,使得 AlpacaFarm 能够模拟人类反馈,成本仅为 RLHF 方法收集数据的 1/45。该研究设计了一种随机的、有噪声的注释方案,使用 13 种不同的 prompt,从多个 LLM 提取出不同的人类偏好。这种注释方案旨在捕获人类反馈的不同方面,如质量判断、注释器之间的变化性和风格偏好。

该研究通过实验表明 AlpacaFarm 的模拟是准确的。当研究团队使用 AlpacaFarm 训练和开发方法时,这些方法与使用实际人类反馈训练和开发的相同方法排名非常一致。下图显示了由 AlpacaFarm 模拟工作流和人类反馈工作流产生的方法在排名上的高度相关性。这一特性至关重要,因为它说明从模拟中得出的实验结论在实际情况下也有可能成立。

除了方法层面的相关性,AlpacaFarm 模拟器还可以复制奖励模型过度优化等定性现象,但以此针对代理奖励(surrogate reward)的持续 RLHF 训练可能会损害模型性能。下图是在人类反馈 (左) 和 AlpacaFarm (右) 两种情况下的该现象,我们可以发现 AlpacaFarm 最初捕获了模型性能提升的正确定性行为,然后随着 RLHF 训练的持续,模型性能下降。

24小时内、200美元复制RLHF过程,斯坦福开源「羊驼农场」

评估

在评估方面,研究团队使用与 Alpaca 7B 的实时用户交互作为指导,并通过结合几个现有公共数据集来模拟指令分布,包括 self-instruct 数据集、anthropic helpfulness 数据集和 Open Assistant、Koala 和 Vicuna 的评估集。使用这些评估指令,该研究比较了 RLHF 模型与 Davinci003 模型的响应(response)情况,并使用一个分值度量 RLHF 模型响应更优的次数,并将这个分值称为胜率(win-rate)。如下图所示,在该研究的评估数据上进行的系统排名量化评估表明:系统排名和实时用户指令是高度相关的。这一结果说明,聚合现有的公开数据能实现与简单真实指令相近的性能。

24小时内、200美元复制RLHF过程,斯坦福开源「羊驼农场」

参考方法

对于第三个挑战 —— 缺少参考实现,研究团队实现并测试了几种流行的学习算法 (如 PPO、专家迭代、best-of-n 采样)。研究团队发现在其他领域有效的更简单方法并不比该研究最初的 SFT 模型更好,这表明在真实的指令遵循环境中测试这些算法是非常重要的。

24小时内、200美元复制RLHF过程,斯坦福开源「羊驼农场」

根据人工评估,PPO 算法被证明是最有效的,它将模型与 Davinci003 相比的胜率从 44% 提高到 55%,甚至超过了 ChatGPT。

这些结果表明,PPO 算法在为模型优化胜率方面是非常有效的。需要注意的是,这些结果是特定于该研究的评估数据和注释器得出的。虽然该研究的评估指令代表了实时用户指令,但它们可能无法涵盖更具有挑战性的问题,并且并不能确定有多少胜率的改进来源于利用风格偏好,而不是事实性或正确性。例如,该研究发现 PPO 模型产生的输出要长得多,并且通常为答案提供更详细的解释,如下图所示:

24小时内、200美元复制RLHF过程,斯坦福开源「羊驼农场」

24小时内、200美元复制RLHF过程,斯坦福开源「羊驼农场」

总的来说,使用 AlpacaFarm 在模拟偏好上训练模型能够大幅改善模型的人类评估结果,而不需要让模型在人类偏好上重新训练。虽然这种迁移过程比较脆弱,并且在效果上仍略逊于在人类偏好数据上重新训练模型。但能在 24 小时内,仅用 200 美元就复制出 RLHF 的 pipeline,让模型迅速提升人类评估性能,AlpacaFarm 这个模拟器还是太香了,是开源社区为复刻 ChatGPT 等模型的强大功能做出的又一努力。

以上就是24小时内、200美元复制RLHF过程,斯坦福开源「羊驼农场」的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/539002.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月9日 14:21:55
下一篇 2025年11月9日 14:23:39

相关推荐

  • 如何在 Python 中使用 GPU 环境

    首先确认硬件支持并安装NVIDIA驱动,运行nvidia-smi查看CUDA版本;然后通过pip或conda安装支持GPU的PyTorch或TensorFlow,如pip install torch –index-url https://download.pytorch.org/whl/…

    2025年12月14日
    000
  • Python csv.DictReader 与 DictWriter 使用技巧

    csv.DictReader和DictWriter通过字典操作提升CSV读写效率。1. DictReader按字段名读取,支持手动指定表头、处理缺失或多余列;2. DictWriter写入时需调用writeheader(),注意newline=”避免空行,并可控制缺失键行为;3. 中文处…

    2025年12月14日
    000
  • Python 嵌套条件语句的最佳实践

    优先使用提前返回减少嵌套:def process_user_data(user): if not user: return “Invalid user” if not user.is_active: return “User not active” i…

    2025年12月14日
    000
  • Python 错误消息 traceback 的解读方法

    先看最后的错误类型和描述,再定位文件行号,最后结合调用栈从下往上分析执行路径。 当你的Python程序出错时,解释器会生成一段以“Traceback (most recent call last)”开头的错误消息。这段信息不是乱码,而是帮你快速定位问题的路线图。关键在于从下往上看,并抓住三个核心部分…

    2025年12月14日
    000
  • Linux 下常见 Python 安装问题排查

    c++kquote>答案是新手在Linux安装Python常遇命令未识别、模块安装失败、SSL错误及多版本冲突问题。需安装对应系统依赖如build-essential和python3-dev,使用python3/pip3命令或创建软链接,确保OpenSSL开发库就位以支持SSL,避免修改默认P…

    2025年12月14日
    000
  • 如何通过Shell脚本配置Python环境变量_LinuxShell脚本设置环境变量教程

    通过Shell脚本可高效配置Python环境变量,首先设置PATH以指定Python解释器路径,如export PATH=”/usr/local/bin/python3.9:$PATH”,确保使用目标版本;其次配置PYTHONPATH添加模块搜索路径,如export PYTH…

    2025年12月14日
    000
  • 人工智能python是什么

    Python因语法简洁、库丰富(如TensorFlow、PyTorch、scikit-learn)、社区强大及与数据科学工具兼容,成为实现人工智能的首选语言,广泛应用于机器学习、深度学习、自然语言处理和计算机视觉等领域。 “人工智能Python”并不是一个独立的技术或产品,而是指使用Python语言…

    2025年12月14日
    000
  • Python多线程如何实现状态机 Python多线程复杂逻辑控制技巧

    使用Lock保护状态变更,结合Condition和队列实现线程安全的状态机,确保多线程下状态切换的安全与逻辑清晰。 在多线程环境中实现状态机,核心是保证状态切换的安全性和逻辑清晰。Python 的 threading 模块提供了基础支持,但要控制复杂逻辑,需结合同步机制与良好的设计模式。 使用线程安…

    2025年12月14日
    000
  • Python 自定义异常类的定义方法

    自定义异常通过继承Exception类实现,可提升错误处理清晰度。例如定义CustomError或含参数的ValidationError,并在try-except中捕获,便于携带上下文信息和分类处理。 在 Python 中,自定义异常类可以让程序更清晰地表达特定错误场景,提升代码可读性和维护性。直接…

    2025年12月14日
    000
  • Python raise from 的用法详解

    使用 raise from 可保留异常链,便于调试;其语法为 raise new_exception from original_exception;适用于封装底层异常、明确因果关系等场景。 在 Python 中,raise from 是一种用于异常链(exception chaining)的语法,…

    2025年12月14日
    000
  • Python 多进程文件读写的常见问题

    多进程文件读写需避免数据混乱和性能问题。1. 多进程写入易导致数据错乱,可用文件锁、独立临时文件合并或专用写进程队列解决;2. 父子进程文件句柄冲突,应延迟打开文件并在子进程独立操作;3. 频繁I/O影响性能,建议批量处理、mmap或tmpfs优化;4. fcntl跨平台不兼容,可改用portalo…

    2025年12月14日
    000
  • Python 环境的自动化 CI/CD 集成方法

    答案:Python项目CI/CD通过自动化测试、依赖管理与可重复部署提升效率。选用GitHub Actions等平台触发流程,标准化项目结构并锁定依赖,运行测试与代码检查确保质量,测试通过后按分支策略自动发布包或部署应用,结合Docker与密钥管理实现安全交付。 在现代软件开发中,Python 项目…

    2025年12月14日
    000
  • Python 如何在函数中传递异常

    Python中异常通过调用栈自动向上传播,若函数未使用try-except捕获,则异常会直接传递给调用者;可通过raise重新抛出已捕获异常以执行清理操作;使用raise new_exception from original_exception可创建异常链,保留原始错误信息;极少数情况下可将异常作…

    2025年12月14日
    000
  • Docker化Django项目PostgreSQL连接失败:深入解析与解决方案

    在开发基于django的docker化应用程序时,连接数据库是核心环节。然而,开发者有时会遇到一个令人困惑的问题:在windows环境下,docker化的django应用能够顺利连接到postgresql数据库,但在mac或linux环境下却反复出现“fatal: password authenti…

    2025年12月14日
    000
  • Python中反转嵌套字典:内存高效的视图实现

    本文旨在探讨在python中高效反转嵌套字典的方法,尤其针对处理大规模数据时可能遇到的内存限制。我们将介绍一个基于`collections.userdict`的`reversedict`类,该类通过实现按需访问和利用生成器,提供一个内存优化的反转字典视图,从而有效避免将整个反转后的字典加载到内存中。…

    2025年12月14日
    000
  • 基于系统时间计算循环动画帧的无状态方法

    本文详细介绍了一种高效且无状态的动画帧计算方法,通过利用系统时间、动画帧范围和每帧持续时间,结合数学模运算,直接推导出当前应显示的动画帧。该方法特别适用于多线程环境或需要避免存储和更新状态变量的场景,提供了一种简洁而精确的解决方案,无需依赖外部状态即可实现平滑循环动画。 引言:无状态动画帧计算的需求…

    2025年12月14日
    000
  • Pyperclip在Linux上如何工作:基于xclip和xsel的C函数解析

    pyperclip是一个跨平台的python模块,用于处理剪贴板操作。在linux系统(尤其是ubuntu)上,它主要依赖于`xclip`或`xsel`这两个命令行工具来与x11剪贴板进行交互。这些工具的底层实现是基于c语言的,它们提供了特定的函数来管理剪贴板数据的读取、写入和选择,遵循`freed…

    2025年12月14日
    000
  • 从LAION-5B在线数据库高效获取指定类别图像的Python教程

    本教程详细介绍了如何使用python从大型在线图像数据库laion-5b的k-nn服务中,根据指定类别高效地获取并下载图像。通过`requests`库发送api请求,解析json响应,并流式下载图片,避免了下载整个庞大数据集的困扰,特别适用于个人项目和资源有限的场景。 在处理图像相关的个人项目时,我…

    2025年12月14日
    000
  • Python实现:探究两位数各位数字乘积特性及其编程查找

    本文将指导您如何使用Python编写程序,寻找所有两位数(10到99)中,其各位数字的乘积恰好等于该数字本身的特殊数。我们将详细解释如何提取数字、计算乘积,并通过实际代码演示正确的实现方法,帮助您理解并解决这类数字逻辑问题。 1. 引言:理解数字特性与编程挑战 在数学和编程领域,我们经常会遇到需要分…

    2025年12月14日
    000
  • 使用 Puppet concat 模块进行文件拼接后的校验

    本文档旨在帮助用户理解并正确使用 puppet concat 模块的 `validate_cmd` 功能,实现文件拼接后的校验。重点在于理解 `validate_cmd` 的工作机制,以及如何编写合适的校验脚本,确保拼接后的文件符合预期。避免在文件内容未完全更新前进行校验,保证配置的正确性和可靠性。…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信