人工智能的未来是人机环境系统智能

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

人工智能的未来是人机环境系统智能

军事智能就像战争一样,是一团迷雾,存在着大量的不确定性,是不可预知、不可预测的。从当前人工智能的发展趋势来看,可预见的未来战争中,存在着许多人机融合隐患仍未能解决,具体有:

网易人工智能 网易人工智能

网易数帆多媒体智能生产力平台

网易人工智能 39 查看详情 网易人工智能

(1)在复杂的信息环境中,人类和机器在特定的时间内吸收、消化和运用有限的信息,对人而言,人的压力越大,误解的信息越多,也就越容易导致困惑、迷茫和意外。对机器而言,对于跨领域非结构化数据的学习理解预测,依然是非常困难的事。

(2)战争中决策所需要的信息在时间和空间上的广泛分布,决定了一些关键信息仍然很难获取。而且机器采集到的重要的客观物理性数据与人类获得的主观加工后的信息和知识很难协调融合。

(3)未来的战争中,存在着大量的非线性特征和出乎意料的多变性,常常会导致作战过程和结果诸多不可预见性,基于公理的形式化逻辑推理已远远不能满足复杂多变战况决策的需求。鉴于核武器的不断蔓延和扩散,国家无论大小,国与国之间的未来战争成本将会越来越高。无论人工智能怎么发展,未来是属于人类的,应该由人类共同定义未来战争的游戏规则并决定人工智能的命运,而不是由人工智能决定人类的命运,究其因,人工智能是逻辑的,而未来战争不仅仅是逻辑的,还存在着大量的非逻辑因素。

(4)鉴于各国对自主装备分类不同,对于强人工智能或叫通用人工智能类武器概念的定义和理解差距都很大,所以当前最重要的工作不时具体的技术问题如何解决(技术迭代更新的非常快),而是有关人工智能应用基本概念和定义如何达成共识,如::①什么是AI?②什么是自主?③自动化与智能化区别是?④机器计算与人算计的区别是?⑤人机功能/能力分配的边界是?⑥数据、AI与风险责任的关系如何?⑦可计算性与可判定性区别等等。

有的定义还很粗略,需要进一步细化,如从人类安全角度看,禁止“人在回路外”的自主武器是符合普世价值且减少失控风险必要之举,但是什么样的人在系统回路中往往就被忽略,一些不负责任的人在防疫系统中可能会更糟糕;

(5)对于世界上自主技术的发展情况,建议设立联合评估小组,定期对自主技术发展情况进行细致的评估与预警,对技术发展关口进行把关,对技术发展进行预测分析,对进行敏感技术开发的重点机构和研发人员进行定向监督,设立一定程度的学术开放要求。

(6)AI军用化发展所面临的安全风险和挑战主要有:

①人工智能和自主系统可能会导致事态意外升级和危机不稳定;

②人工智能和自主系统将会降低对手之间的战略稳定性(如中美、美俄之间战略关系将更加紧张);

③人和自主系统的不同组合(包括人判断+人决策、人判断+机决策、机判断+人决策、机判断+机决策)会影响双方的态势升级;

④机器理解人发出的威慑信号(尤其是降级信号)较差;

⑤ 自主系统无意攻击友军或平民的事故将引起更多质疑;

⑥ 人工智能和自主系统可能会导致军备竞赛的不稳定性;

⑦ 自主系统的扩散可能引发人们认真寻找对策,这些对策将加剧不确定性,且各国将担忧安全问题。

计算应对“复”,算计处理“杂”,写作文就是一种计算计过程,只不过不是用数字图形,而是用文字符号。

人类不可能完全掌握世界,但可以尝试理解世界,这种智能会催生出更新的哲学范畴和思考。

在冯·诺伊曼生前出版的最后一本关于大脑和计算机之间关系的著作,《计算机与人脑》(The Computer and the Brain)中,冯·诺伊曼总结了自己以上观点,并且承认大脑不仅远比机器复杂,而且大脑似乎沿着他最初设想的不同路线来实现其功能。几乎盖棺论定般地,他认为使用二进制的计算机完全不适合用来模拟大脑。这是因为他已经几乎可以论定,大脑的逻辑结构,和逻辑学、数学的逻辑结构完全不同,那么,“从评估中枢神经系统真正使用的数学或逻辑语音的角度来看,我们使用的数学的外在形式完全不适合做这样的工作。”​

最近的科学研究也证实了这一点。法国神经科学家罗曼·布雷特(RomainBrette)的发现从根本上质疑了大脑和计算机底层架构上的一致性,即神经编码。科学家们受到大脑和计算机之间隐喻的影响,将技术意义层面上的刺激和神经元之间的联系,转移到了表征意义上神经元编码彻底代表了刺激。事实上,神经网络是如何以一种最佳的解码方式将信号传递给脑中的理想化观察者的“下游结构”(downstreamstructure),至今是未知的,甚至在简单的模型中也没有明确的假说。那么,这种隐喻会导致科学家们只关注感觉和神经元之间的联系,而忽视动物的行为真正对神经元的影响。

匈牙利神经科学家盖伊尔吉·布萨基的研究结果更为激进。在他的《由内而外的脑》一书中,布萨基指出,大脑事实上并不是在通过编码表征信息,而是构建了信息。在他看来,脑并不是简单被动地接受刺激,然后通过神经编码来表征他们,而是通过积极地搜索各种可能性来测试各种可能的选择。这无疑是对于用计算机来比喻大脑的隐喻的全盘推翻。

无论是从脑科学,还是计算机科学的角度,这种将大脑比作计算机的隐喻寿命或许都将不再延续。科布敏锐地指出,这种隐喻被作用到人们对于计算机的研究之中,让人们盲觉,缩小了真正该研究的范围。

以上就是人工智能的未来是人机环境系统智能的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/546497.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月9日 17:57:09
下一篇 2025年11月9日 17:58:10

相关推荐

  • html搜索框如何跳转_实现HTML搜索框跳转搜索结果【结果】

    HTML搜索框跳转失败多因表单action或参数错误,可通过五种方法解决:一、百度用form提交至https://www.baidu.com/s?q=关键词;二、Google类似,action为https://www.google.com/search;三、JavaScript拼接必应URL并loc…

    2025年12月23日
    200
  • 从OpenAI API JSON响应中高效提取生成文本内容

    本教程详细指导开发者如何从openai api返回的json格式响应中准确提取生成的文本。通过利用`json.parse()`方法解析响应字符串,并访问`choices[0].text`属性,可以安全、高效地获取核心文本内容,从而避免直接字符串操作的潜在问题,确保api数据处理的健壮性。 OpenA…

    2025年12月23日
    000
  • HTML语义化未来趋势有哪些_HTML语义化在Web发展中的趋势与展望

    HTML语义化正朝着智能、高效、包容发展,深度融合结构化数据与ARIA属性,提升机器理解;2. 组件化趋势推动可复用语义结构普及,Web Components实现自定义语义标签;3. 语义化助力性能优化与可访问性,支持懒加载与内容优先级划分;4. AI工具将自动生成语义化代码并辅助检测,降低实践门槛…

    2025年12月23日
    000
  • HTML数据如何实现数据智能 HTML数据智能分析的技术架构

    实现HTML数据智能分析需构建包含采集、解析、存储、分析与可视化的闭环系统,首先通过爬虫技术获取网页数据并进行清洗标准化,接着利用DOM树分析与NLP技术提取结构化信息,随后将数据存入合适数据库或数据仓库并建立元数据管理机制,进而应用AI模型开展分类、情感分析、趋势预测与知识图谱构建等智能分析,最终…

    2025年12月23日
    000
  • HTML5 section怎么用_HTML5内容分区标签应用场景说明

    在HTML5中,标签用于定义文档中具有明确主题的独立内容区块,需包含标题以体现其结构性与语义性,常用于文章章节、产品模块等场景,区别于无语义的和可独立分发的。 在HTML5中,section 标签用于定义文档中的一个独立内容区块。它不是简单的容器,而是有语义的结构化标签,表示文档中一个主题性的分区,…

    2025年12月23日
    000
  • htm算法 前景如何_分析HTM算法应用前景

    HTM算法在实时异常检测、预测性维护等时序数据场景中具备应用价值,其无需大量标注数据的特性适合工业监控、网络安防等领域;但受限于生态薄弱、性能不及主流模型及工程实现难度,短期内难以成为主流,更可能作为边缘计算或AI系统补充技术,在特定专业领域持续发展。 HTM(Hierarchical Tempor…

    2025年12月23日
    000
  • HTML结构化数据怎么添加_Schema标记添加教程

    Schema标记通过结构化数据帮助搜索引擎理解网页内容,提升搜索结果展示效果,如添加星级评分、价格等富文本信息。使用JSON-LD或Microdata格式将符合Schema.org标准的类型(如Article、Product)嵌入HTML中,可增强SEO,需通过Google Rich Results…

    2025年12月22日
    000
  • 如何实现自定义提示

    掌握自定义提示需构建迭代工作流,通过明确目标、设定角色、提供上下文、结构化输出、示例引导、迭代优化、负面提示和链式思考,实现AI输出的精准控制与高效协同。 实现自定义提示,核心在于理解与AI模型交互的本质,并将其从“提问”升级为“引导”。它不是简单的抛出问题,而是通过精心设计的语言结构、上下文信息、…

    2025年12月22日
    000
  • JavaScript机器学习与人工智能库应用

    JavaScript在AI领域应用扩展,依托TensorFlow.js实现浏览器内模型推理与训练,利用WebGL加速;ML5.js提供高层接口,简化图像识别、风格迁移等功能调用;Brain.js支持轻量级神经网络开发,适用于前端智能场景如实时检测、自动补全等,虽性能不及Python,但在交互式轻量应…

    2025年12月20日
    100
  • LangChain HNSWLib 向量存储机制与数据持久化指南

    本文详细解析langchain中hnswlib向量存储的工作原理,明确其作为内存存储的特性,指出数据实际存储在项目部署的服务器上,而非langchain官方服务器。同时,文章将指导如何通过save_local()方法将内存中的向量数据持久化到本地文件,确保数据安全与可靠性,并探讨在实际应用中的注意事…

    2025年12月20日
    000
  • 使用LINE Bot与OpenAI API发送文本和贴图的完整教程

    本文详细介绍了如何在LINE Bot中集成OpenAI API生成文本回复,并在此基础上发送LINE贴图。核心挑战在于LINE Messaging API的replyToken通常只能使用一次,导致连续发送文本和贴图时出现400错误。解决方案是利用API支持一次性发送多条消息的特性,将文本和贴图消息…

    2025年12月20日
    000
  • C语言数据结构:数据结构在人工智能中的关键作用

    C 语言数据结构:数据结构在人工智能中的关键作用 概述 在人工智能领域,数据结构对于处理大量数据至关重要。数据结构提供了一种组织和管理数据的有效方法,优化算法和提高程序的效率。 常见的数据结构 立即学习“C语言免费学习笔记(深入)”; C 语言中常用的数据结构包括: 数组:一组连续存储的数据项,具有…

    2025年12月18日
    000
  • C语言算法问答集:将算法应用于人工智能

    搜索算法:二分查找,高效地在数组中查找元素。排序算法:快速排序,将数据序列按特定顺序排列。图形算法:dijkstra 算法,寻找两个节点间最短路径。机器学习算法:线性回归,训练模型对数据进行预测。 C 语言算法问答集:将算法应用于人工智能 前言 算法在人工智能(AI)中扮演着至关重要的角色,可为 A…

    2025年12月18日
    000
  • 人工智能如何提升 C 代码安全性检查

    答案:人工智能(ai)通过数据流分析、启发式检测和代码重构建议等方式提升了 c 代码安全性检查的效率。数据流分析:识别数据流并发现安全漏洞,如缓冲区溢出。启发式检测:学习已知漏洞模式并识别类似模式。代码重构建议:提供将不安全代码转换为安全替代方案的建议。 人工智能提升 C 代码安全性检查 简介C 语…

    2025年12月18日
    000
  • 人工智能支持的 C 代码覆盖率分析

    人工智能支持的 C 代码覆盖率分析 在软件开发中,代码覆盖率分析是一个关键步骤,它可以帮助开发人员识别未执行的代码路径。传统的方法通常涉及编写测试场景并手动检查执行情况。然而,人工智能 (AI) 的出现为自动化和改进代码覆盖率分析过程开辟了新的可能性。 AI 在代码覆盖率分析中的作用 AI 算法可用…

    2025年12月18日
    000
  • 人工智能如何帮助 C 语言代码在嵌入式系统中应用?

    人工智能 (ai) 通过以下方式提升嵌入式 c 语言代码的应用:代码优化:识别高能量耗或计算密集型功能并将其优化。代码生成:使用自然语言处理 (nlp) 从规格中自动生成代码。测试和验证:自动化测试和验证过程,检测传统方法可能错过的缺陷。 人工智能如何提升嵌入式系统中 C 语言代码的应用 人工智能 …

    2025年12月18日
    000
  • 人工智能如何为 C 语言代码提供安全增强功能?

    人工智能通过提供以下功能来提升 c 代码安全性:静态分析:识别潜在安全漏洞(例如缓冲区溢出);动态分析:监控代码执行并检测异常行为;模糊测试:生成随机输入以测试代码的异常行为;自动化修复:建议修复措施或自动生成补丁程序。 人工智能赋能 C 代码:提升安全性 人工智能 (AI) 在 C 代码安全方面发…

    2025年12月18日
    100
  • 人工智能如何增强 C 语言代码的调试能力?

    问题:如何增强 c 语言代码的调试能力?答案:利用人工智能 (ai) 技术,包括:ai 驱动的代码分析:使用机器学习模型识别潜在问题,例如内存泄漏和空指针引用。ide 集成:将代码分析工具集成到 ide 中,以便在开发环境中直接访问结果。自动异常处理:识别异常并自动采取行动,例如记录错误或中止应用程…

    2025年12月18日
    000
  • 人工智能如何提高 C 语言代码的可移植性?

    使用宏和条件编译提高 C 代码的可移植性 可移植性对于任何软件开发项目都至关重要,尤其是当代码需要跨不同平台编译时。C 语言作为一种底层语言,可移植性尤为关键。以下是使用宏和条件编译提高 C 代码可移植性的方法: 宏: 宏本质上是文本替换指令,允许在预处理阶段根据特定条件替换代码。例如,以下宏定义了…

    2025年12月18日
    000
  • 利用人工智能优化 C 代码构建和部署

    ai 优化了 c 代码构建和部署,包括: 1. 错误预测:及早发现错误,减少调试时间。 2. 资源优化:优化构建过程,缩短构建时间。 3. 并行构建:识别可并行执行的任务,缩短构建时间。 4. 版本控制:自动管理代码版本,确保部署顺畅。 5. 部署策略:建议最佳部署方法,提高应用程序可用性。 6. …

    2025年12月18日
    000

发表回复

登录后才能评论
关注微信