DeepMind表示:AI模型需要减肥,自回归成为主要趋势

以Transformer为核心的自回归注意力类程序始终难以跨过规模化这道难关。为此,DeepMind/谷歌最近建立新项目,提出一种帮助这类程序有效瘦身的好办法。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

DeepMind:AI模型需瘦身,自回归路线将成主流

DeepMind与Google Brain打造的Perceiver AR架构回避了一大严重占用资源的任务——将输入与输出的组合性质计算至潜在空间。相反,他们向潜在空间引入了“因果掩蔽”,由此实现了典型Transformer的自回归顺序。

人工智能/深度学习领域最令人印象深刻的发展趋势之一,就是模型体量越来越大。该领域的专家表示,由于规模往往与效能直接挂钩,所以这股体量膨胀的浪潮恐怕还将持续下去。

但项目规模越来越大,消耗的资源自然也越来越多,这就导致深度学习引发了社会伦理层面的新问题。这一困境,已经得到《自然》等主流科学期刊的关注。

也正因为如此,我们恐怕又要回归“效率”这个老字眼——AI程序,到底还没有进一步提效的空间?

DeepMind及Google Brain部门的科学家们,最近对自己去年推出的神经网络Perceiver进行了一番改造,希望能提升其对算力资源的使用效率。

新程序被命名为Perceiver AR。这里的AR源自自回归“autoregressive”,也是如今越来越多深度学习程序的又一发展方向。自回归是一种让机器将输出作为程序新输入的技术,属于递归操作,借此构成多个元素相互关联的注意力图。

谷歌在2017年推出的大受欢迎的神经网络Transformer,也同样具有这种自回归特性。事实上,后来出现的GPT-3以及Perceiver的首个版本都延续了自回归的技术路线。

在Perceiver AR之前,今年3月推出的Perceiver IO是Perceiver的第二个版本,再向前追溯就是去年这个时候发布的Perceiver初版了。

最初的Perceiver创新点,在于采用Transformer并做出调整,使其能够灵活吸纳各种输入,包括文本、声音和图像,由此脱离对特定类型输入的依赖。如此一来,研究人员即可利用多种输入类型开发相应的神经网络。

作为时代大潮中的一员,Perceiver跟其他模型项目一样,也都开始使用自回归注意力机制将不同输入模式和不同任务域混合起来。此类用例还包括谷歌的Pathways、DeepMind的Gato,以及Meta的data2vec。

到今年3月,初版Perceiver的缔造者Andrew Jaegle及其同事团队又发布了“IO”版本。新版本增强了Perceiver所支持的输出类型,实现了包含多种结构的大量输出,具体涵盖文本语言、光流场、视听序列乃至符号无序集等等。Perceiver IO甚至能够生成《星际争霸2》游戏中的操作指令。

在这次的最新论文中,Perceiver AR已经能够面向长上下文实现通用自回归建模。但在研究当中,Jaegle及其团队也遇到了新的挑战:模型应对各类多模式输入和输出任务时,该如何实现扩展。

问题在于,Transformer的自回归质量,以及任何同样构建输入到输出注意力图的程序,都需要包含多达数十万个元素的巨量分布规模。

这就是注意力机制的致命弱点所在。更准确地说,需要关注一切才能建立起注意力图的概率分布。

正如Jaegle及其团队在论文中提到,当输入当中需要相互比较的事物数量的增加,模型对算力资源的吞噬也将愈发夸张:

这种长上下文结构与Transformer的计算特性之间相互冲突。Transformers会反复对输入执行自注意力操作,这会导致计算需求同时随输入长度而二次增长,并随模型深度而线性增加。输入数据越多,观察数据内容所对应的输入标记就越多,输入数据中的模式也变得愈发微妙且复杂,必须用更深的层对所产生的模式进行建模。而由于算力有限,因此Transformer用户被迫要么截断模型输入(防止观察到更多远距模式),要么限制模型的深度(也就剥夺了它对复杂模式进行建模时的表达能力)。

实际上,初版Perceiver也曾经尝试过提高Transformers的效率:不直接执行注意力,而是对输入的潜在表示执行注意力。如此一来,即可“(解耦)处理大型输入数组的算力要求同大深度网络所对应的算力要求”。

DeepMind:AI模型需瘦身,自回归路线将成主流

Perceiver AR与标准Transformer深度网络、增强型Transformer XL间的比较。

在潜在部分中,输入表示经过了压缩,因此成为一种效率更高的注意力引擎。这样,“对于深度网络,大部分计算就实际发生在自注意力堆栈上”,而无需对无数输入执行操作。

但挑战仍然存在,因为潜在表示不具备顺序概念,所以Perceiver无法像Transformer那样生成输出。而顺序在自回归中至关重要,每个输出都应该是它之前输入的产物,而非之后的产物。

豆包大模型 豆包大模型

字节跳动自主研发的一系列大型语言模型

豆包大模型 834 查看详情 豆包大模型

研究人员们写道,“但由于每个潜在模型都关注所有输入,而不管其位置如何,所以对于要求每个模型输出必须仅依赖其之前输入的自回归生成来说,Perceiver将无法直接适用。”

而到了Perceiver AR这边,研究团队更进一步,将顺序插入至Perceiver当中,使其能够实现自动回归功能。

这里的关键,就是对输入和潜在表示执行所谓“因果掩蔽”。在输入侧,因果掩蔽会执行“交叉注意”,而在潜在表示这边则强制要求程序只关注给定符号之前的事物。这种方法恢复了Transformer的有向性,且仍能显著降低计算总量。

结果就是,Perceiver AR能够基于更多输入实现与Transformer相当的建模结果,但性能得以极大提高。

他们写道,“Perceiver AR可以在合成复制任务中,完美识别并学习相距至少 100k个标记的长上下文模式。”相比之下,Transformer的硬限制为2048个标记,标记越多则上下文越长,程序输出也就越复杂。

与广泛使用纯解码器的Transformer和Transformer-XL架构相比,Perceiver AR的效率更高,而且能够根据目标预算灵活改变测试时实际使用的算力资源。

论文写道,在同等注意力条件下,计算Perceiver AR的挂钟时间要明显更短,且能够要同等算力预算下吸纳更多上下文(即更多输入符号):

Transformer的上下文长度限制为2048个标记,相当于只支持6个层——因为更大的模型和更长的上下文需要占用巨量内存。使用同样的6层配置,我们可以将Transformer-XL内存的总上下文长度扩展至8192个标记。Perceiver AR则可将上下文长度扩展至65k个标记,如果配合进一步优化,甚至有望突破100k。

所有这一切,都令计算变得更加灵活:“我们能够更好地控制给定模型在测试过程中产生的计算量,并使我们能够在速度与性能间稳定求取平衡。”

Jaegle及其同事还写道,这种方法适用于任意输入类型,并不限于单词符号。例如可以支持图像中的像素:

只要应用了因果掩蔽技术,相同过程就适用于任何可以排序的输入。例如,通过对序列中每个像素的R、G、B颜色通道进行有序或乱序解码,即可按光栅扫描顺序为图像的RGB通道排序。

作者们发现Perceiver中蕴藏着巨大潜力,并在论文中写道,“Perceiver AR是长上下文通用型自回归模型的理想候选方案。”

但要想追求更高的计算效率,还需要解决另一个额外的不稳定因素。作者们指出,最近研究界也在尝试通过“稀疏性”(即限制部分输入元素被赋予重要性的过程)来减少自回归注意力的算力需求。

DeepMind:AI模型需瘦身,自回归路线将成主流

在相同的挂钟时间内,Perceiver AR能够在层数相同的情况下运行更多来自输入的符号,或者在输入符号运行数量相同的情况下显著缩短计算时长。作者认为,这种出色的灵活性有望为大型网络找到一种通用的提效方法。

但稀疏性也有自己的缺点,主要就是过于死板。论文写道,“使用稀疏性方法的缺点在于,必须以手动调整或者启发式方法创建这种稀疏性。这些启发式方法往往只适用于特定领域,而且往往很难调整。”OpenAI与英伟达在2019年发布的Sparse Transformer就属于稀疏性项目。

他们解释道,“相比之下,我们的工作并不需要在注意力层上强制手动创建稀疏模式,而是允许网络自主学习哪些长上下文输入更需要关注、更需要通过网络进行传播。”

论文还补充称,“最初的交叉注意力操作减少了序列中的位置数量,可以被视为一种稀疏学习形式。”

以这种方式学习到的稀疏性本身,也许会在未来几年内成为深度学习模型工具包中的又一强大利器。

以上就是DeepMind表示:AI模型需要减肥,自回归成为主要趋势的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/553929.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月9日 21:29:59
下一篇 2025年11月9日 21:31:03

相关推荐

  • 怎样用免费工具美化PPT_免费美化PPT的实用方法分享

    利用KIMI智能助手可免费将PPT美化为科技感风格,但需核对文字准确性;2. 天工AI擅长优化内容结构,提升逻辑性,适合高质量内容需求;3. SlidesAI支持语音输入与自动排版,操作便捷,利于紧急场景;4. Prezo提供多种模板,自动生成图文并茂幻灯片,适合学生与初创团队。 如果您有一份内容完…

    2025年12月6日 软件教程
    100
  • Pages怎么协作编辑同一文档 Pages多人实时协作的流程

    首先启用Pages共享功能,点击右上角共享按钮并选择“添加协作者”,设置为可编辑并生成链接;接着复制链接通过邮件或社交软件发送给成员,确保其使用Apple ID登录iCloud后即可加入编辑;也可直接在共享菜单中输入邮箱地址定向邀请,设定编辑权限后发送;最后在共享面板中管理协作者权限,查看实时在线状…

    2025年12月6日 软件教程
    200
  • REDMI K90系列正式发布,售价2599元起!

    10月23日,redmi k90系列正式亮相,推出redmi k90与redmi k90 pro max两款新机。其中,redmi k90搭载骁龙8至尊版处理器、7100mah大电池及100w有线快充等多项旗舰配置,起售价为2599元,官方称其为k系列迄今为止最完整的标准版本。 图源:REDMI红米…

    2025年12月6日 行业动态
    200
  • Linux中如何安装Nginx服务_Linux安装Nginx服务的完整指南

    首先更新系统软件包,然后通过对应包管理器安装Nginx,启动并启用服务,开放防火墙端口,最后验证欢迎页显示以确认安装成功。 在Linux系统中安装Nginx服务是搭建Web服务器的第一步。Nginx以高性能、低资源消耗和良好的并发处理能力著称,广泛用于静态内容服务、反向代理和负载均衡。以下是在主流L…

    2025年12月6日 运维
    000
  • Linux journalctl与systemctl status结合分析

    先看 systemctl status 确认服务状态,再用 journalctl 查看详细日志。例如 nginx 启动失败时,systemctl status 显示 Active: failed,journalctl -u nginx 发现端口 80 被占用,结合两者可快速定位问题根源。 在 Lin…

    2025年12月6日 运维
    100
  • 华为新机发布计划曝光:Pura 90系列或明年4月登场

    近日,有数码博主透露了华为2025年至2026年的新品规划,其中pura 90系列预计在2026年4月发布,有望成为华为新一代影像旗舰。根据路线图,华为将在2025年底至2026年陆续推出mate 80系列、折叠屏新机mate x7系列以及nova 15系列,而pura 90系列则将成为2026年上…

    2025年12月6日 行业动态
    100
  • Linux如何优化系统性能_Linux系统性能优化的实用方法

    优化Linux性能需先监控资源使用,通过top、vmstat等命令分析负载,再调整内核参数如TCP优化与内存交换,结合关闭无用服务、选用合适文件系统与I/O调度器,持续按需调优以提升系统效率。 Linux系统性能优化的核心在于合理配置资源、监控系统状态并及时调整瓶颈环节。通过一系列实用手段,可以显著…

    2025年12月6日 运维
    000
  • 曝小米17 Air正在筹备 超薄机身+2亿像素+eSIM技术?

    近日,手机行业再度掀起超薄机型热潮,三星与苹果已相继推出s25 edge与iphone air等轻薄旗舰,引发市场高度关注。在此趋势下,多家国产厂商被曝正积极布局相关技术,加速抢占这一细分赛道。据业内人士消息,小米的超薄旗舰机型小米17 air已进入筹备阶段。 小米17 Pro 爆料显示,小米正在评…

    2025年12月6日 行业动态
    000
  • 荣耀手表5Pro 10月23日正式开启首销国补优惠价1359.2元起售

    荣耀手表5pro自9月25日开启全渠道预售以来,市场热度持续攀升,上市初期便迎来抢购热潮,一度出现全线售罄、供不应求的局面。10月23日,荣耀手表5pro正式迎来首销,提供蓝牙版与esim版两种选择。其中,蓝牙版本的攀登者(橙色)、开拓者(黑色)和远航者(灰色)首销期间享受国补优惠价,到手价为135…

    2025年12月6日 行业动态
    000
  • 环境搭建docker环境下如何快速部署mysql集群

    使用Docker Compose部署MySQL主从集群,通过配置文件设置server-id和binlog,编写docker-compose.yml定义主从服务并组网,启动后创建复制用户并配置主从连接,最后验证数据同步是否正常。 在Docker环境下快速部署MySQL集群,关键在于合理使用Docker…

    2025年12月6日 数据库
    000
  • Xbox删忍龙美女角色 斯宾塞致敬板垣伴信被喷太虚伪

    近日,海外游戏推主@HaileyEira公开发表言论,批评Xbox负责人菲尔·斯宾塞不配向已故的《死或生》与《忍者龙剑传》系列之父板垣伴信致敬。她指出,Xbox并未真正尊重这位传奇制作人的创作遗产,反而在宣传相关作品时对内容进行了审查和删减。 所涉游戏为年初推出的《忍者龙剑传2:黑之章》,该作采用虚…

    2025年12月6日 游戏教程
    000
  • 如何在mysql中分析索引未命中问题

    答案是通过EXPLAIN分析执行计划,检查索引使用情况,优化WHERE条件写法,避免索引失效,结合慢查询日志定位问题SQL,并根据查询模式合理设计索引。 当 MySQL 查询性能下降,很可能是索引未命中导致的。要分析这类问题,核心是理解查询执行计划、检查索引设计是否合理,并结合实际数据访问模式进行优…

    2025年12月6日 数据库
    000
  • VSCode入门:基础配置与插件推荐

    刚用VSCode,别急着装一堆东西。先把基础设好,再按需求加插件,效率高还不卡。核心就三步:界面顺手、主题舒服、功能够用。 设置中文和常用界面 打开软件,左边活动栏有五个图标,点最下面那个“扩展”。搜索“Chinese”,装上官方出的“Chinese (Simplified) Language Pa…

    2025年12月6日 开发工具
    000
  • php查询代码怎么写_php数据库查询语句编写技巧与实例

    在PHP中进行数据库查询,最常用的方式是使用MySQLi或PDO扩展连接MySQL数据库。下面介绍基本的查询代码写法、编写技巧以及实用示例,帮助你高效安全地操作数据库。 1. 使用MySQLi进行查询(面向对象方式) 这是较为推荐的方式,适合大多数中小型项目。 // 创建连接$host = ‘loc…

    2025年12月6日 后端开发
    000
  • 重现iPhone X颠覆性时刻!苹果2027年跳过19命名iPhone 20

    10月23日,有消息称,苹果或将再次调整iPhone的发布节奏,考虑跳过“iPhone 19”,并于2027年直接推出“iPhone 20”系列。 此举据传是为了庆祝初代iPhone发布二十周年,同时开启新一轮的设计革新,目标是复刻2017年iPhone X带来的划时代变革。 据悉,苹果或将告别长期…

    2025年12月6日 手机教程
    000
  • 如何在mysql中使用索引提高查询效率

    合理创建索引可显著提升MySQL查询效率,应优先为WHERE、JOIN、ORDER BY等高频字段建立B-Tree复合索引,如CREATE INDEX idx_status_created ON users(status, created_at, id),并遵循最左前缀原则;避免在索引列使用函数或前…

    2025年12月6日 数据库
    000
  • Linux命令行中free命令的使用方法

    free命令用于查看Linux内存使用情况,包括总内存、已用、空闲、共享、缓存及可用内存;使用-h可读格式显示,-s周期刷新,-c限制次数,-t显示总计,帮助快速评估系统内存状态。 free命令用于显示Linux系统中内存和交换空间的使用情况,包括物理内存、已用内存、空闲内存以及缓存和缓冲区的占用情…

    2025年12月6日 运维
    000
  • 在 Java 中使用 Argparse4j 接收 Duration 类型参数

    本文介绍了如何使用 `net.sourceforge.argparse4j` 库在 Java 命令行程序中接收 `java.time.Duration` 类型的参数。由于 `Duration` 不是原始数据类型,需要通过自定义类型转换器或工厂方法来处理。文章提供了两种实现方案,分别基于 `value…

    2025年12月6日 java
    000
  • Linux命令行中tail -f命令的详细应用

    tail -f 用于实时监控文件新增内容,常用于日志查看;支持 -F 处理轮转、-n 指定行数、结合 grep 过滤,可监控多文件,需注意权限与资源释放。 tail -f 是 Linux 中一个非常实用的命令,主要用于实时查看文件的新增内容,尤其在监控日志文件时极为常见。它会持续输出文件末尾新增的数…

    2025年12月6日 运维
    000
  • Phaser 3游戏画布响应式布局:实现高度适配与宽度裁剪

    本文深入探讨phaser 3游戏画布在特定响应式场景下的布局策略,尤其是在需要画布高度适配父容器并允许左右内容裁剪时。通过结合phaser的scalemanager中的`height_controls_width`模式与精细的css布局,本教程将展示如何实现一个既能保持游戏画面比例,又能完美融入不同…

    2025年12月6日 web前端
    000

发表回复

登录后才能评论
关注微信