量子CNN对数据集的测试准确率高,但存在局限性

在10月4日公布的2022年诺贝尔奖中,Alain Aspect 、John F. Clause 和 Anton Zeilinger 三位科学家凭借量子纠缠获得物理学奖项,引起了外界对量子研究领域的关注和讨论。

其中,以量子计算为代表的研究投资近几年迎来显著增加,人们开始探索从安全、网络通信等领域出发,用量子方法来颠覆现有的经典计算技术。

有研究人员认为,量子计算的核心在于“通过计算成本更低的技术解决经典难题”,而随着近年来深度学习和量子计算的研究并行发展,不少研究者也开始关注到这两个领域的交叉点:量子深度学习。

近日,Xbox 游戏工作室 Rare 洞察主管 Holly Emblem 在新的文章“Quantum Deep Learning: A Quick Guide to Quantum Convolutional Neural Networks”中,就量子深度学习的现有研究和应用进行介绍,并重点讨论了量子卷积神经网络 (QCNN)与经典计算方法相比存在的优势和局限性。

1 经典计算和量子计算的区别

首先介绍一个关于经典计算和量子计算区别的重要概念。在经典计算机上执行程序时,编译器会将程序语句转换为二进制位;而在量子计算中,与经典计算机上的位在任何时候都代表 1 或 0 的状态不同,量子位能够在这两种状态间“悬停”,只有当它被测量时,量子比特才会崩溃到它的两个基态之一,即 1 或 0。

这种属性称为叠加,在量子计算任务中有至关重要的作用。通过叠加,量子计算机可以并行执行任务,而不需要完全并行的架构或 GPU 来执行。其原因在于,当每个叠加状态对应一个不同的值,如果对叠加状态进行操作,则该操作同时在所有状态上执行。

这里举一个叠加量子态的例子:

量子态的叠加是指数的,a 和 b 指概率幅度,其给出了一旦执行测量就投射到一个状态的概率。其中,叠加量子态是通过使用量子逻辑门来创建的。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

图片

图注:Ragsxl 在芬兰埃斯波的 IQM 量子计算机

2 纠缠和贝尔态

叠加在量子物理学中十分重要,而另一个关键的原理则是纠缠。

纠缠指在两个或多个粒子之间、以某种方式产生或引起相互作用的行为,这意味着这些粒子的量子态不再能彼此独立地描述,即使相隔很远也是如此。当粒子被纠缠时,如果一个粒子被测量,与之纠缠的另一个粒子将立即测量为相反的状态(这些粒子没有局部状态)。

随着对量子比特和纠缠的理解的发展,继而来讨论贝尔态,下面展示了量子比特的最大纠缠态:

|00⟩ → β → 1 √ 2 (|00⟩ + |11⟩) = |β00⟩,

|01⟩ → β → 1 √ 2 (|01⟩ + |10⟩) = |β01⟩

|10⟩ → β → 1 √ 2 (|00⟩ – |11⟩) = |β10⟩

|11⟩ → β → 1 √ 2 (|01⟩ – |10⟩) = |β11⟩

使用量子电路创建贝尔态:

图片

图注:Perry 量子计算神殿的贝尔态电路

在所显示的贝尔态电路中,其接受量子位输入并应用 Hadamard 门和 CNOT 门创来建一个纠缠的贝尔态。

目前,贝尔态已被用于开发一系列量子计算应用程序;其中,Hegazy、Bahaa-Eldin 和 Dakroury 就提出了贝尔态和超密集编码可用于实现“无条件安全”的理论。

3 卷积神经网络和量子卷积神经网络

François Chollet 在 Python 深度学习中指出,卷积神经网络 (CNN) 在图像分类等任务中很受欢迎,其原因在于它们能构建模式层次结构,例如先表示线条、再表示这些线条的边缘,这使得 CNN 能够建立在层之间的信息上,并表示复杂的视觉数据。

CNN 具有卷积层,由过滤器组成,这些过滤器会在输入中“滑动”并产生“特征图”,允许检测输入中的模式。同时,CNN 可使用池化层来减小特征图的大小,从而减少学习所需的资源。

图片

图注:Cecbur 展示的卷积神经网络

定义了经典的 CNN 后,我们就可以探索量子 CNN (量子卷积神经网络,QCNN)是如何利用这些传统方法、并对其进行扩展。

Garg 和 Ramakrishnan 认为,开发量子神经网络的一种常见方法,是开发一种“混合”方法,引入所谓的“量子卷积层”,这是一种基于随机量子电路的变换,在经典 CNN 中作为附加组件出现。

下面展示了由 Yanxuan Lü 等研究人员开发、并在MNIST 手写数字数据集上进行测试的混合 QCNN:

研究人员在论文“A Quantum Convolutional Neural Network for Image Classification”中,采用了量子电路和纠缠作为经典模型的一部分来获取输入图像,并生成预测作为输出。

面试猫 面试猫

AI面试助手,在线面试神器,助你轻松拿Offer

面试猫 39 查看详情 面试猫

图片

在这种方法中,QCNN 将图像数据作为输入,并将其编码为量子态 |x>,然后使用量子卷积和池化层对其进行转换来提取特征;最后,使用强纠缠电路的全连接层进行分类,并通过测量得到预测。

其中,优化是通过随机梯度下降(SGD)处理的,可用于减少训练数据标签与 QCNN 预测标签之间的差异。聚焦于量子电路,量子卷积层中使用的门如下所示,其中包括了旋转算子和 CNOT 门。

在池化层测量量子位的一个子集,所得出的结果会决定是否对其临近的位应用单量子位门:

全连通层由“通用单量子位门”和产生纠缠态的CNOT门组成,为了将 QCNN 与其他方法进行比较,研究人员使用了带有模拟 QCNN 的 MNIST 数据集。按照典型的方法,我们创建了一个训练/测试数据集,并开发了一个由以下层组成的 QCNN:

2个量子卷积层2 个量子池层1个量子全连接层

该 QCNN 对数据集的测试集准确率达到了 96.65%,而根据 Papers with Code 的数据进行测试后,该数据集在经典 CNN 中的最高准确度得分可达到 99.91%。

要注意的是,该实验只有两类 MNIST 数据集被分类,这也就意味着将其与其他 MNIST 模型性能完全比较会存在局限性。

4 可行性评估和总结

虽然研究人员在 QCNN 开发了方法,但目前该领域的一个关键问题是,实现理论模型所需的硬件还不存在。此外,混合方法在经典 CNN 计算中同时引入量子演化层的测试方法,也面临着挑战。

如果我们考虑量子计算的优势之一,是可以解决“通过计算成本更低的技术解决经典棘手的问题”,那么这些解决方案中的一个重要方面就在于“量子加速”。有研究人员认为,量子机器学习与经典实现相比,其优势在于预计量子算法可具有多项式、甚至指数级的加速时间。

然而,上文中展示的 QCNN 方法存在一个局限性是,当我们需要对经典数据和测量进行一致解码/编码的算法(如 QCNN )时,“量子加速”增益是有限的;而目前,关于如何设计出最好的编码/解码和需要最小测量的协议、使其能够受益于“量子加速”的信息并不多。

纠缠已被证明是量子机器学习的一个重要性质,本文所提到的关于 QCNN 利用强纠缠电路,可以产生纠缠态作为其全连通层的研究,使模型能够进行预测。不仅如此,纠缠也在其他领域中被用于辅助深度学习模型,例如使用纠缠从图像中提取重要特征,以及在数据集中使用纠缠、可能意味着模型能够从比之前预期更小的训练数据集中学习等等。

本文提供了经典深度学习方法和量子深度学习方法的比较,并讨论了利用量子层(包括强纠缠电路)生成预测的 QCNN ,分析量子深度学习的好处和局限性,并介绍了纠缠在机器学习中更普遍的应用,这也意味着我们可以开始考虑量子深度学习的下一步,特别是 QCNN 在更多领域中的应用。除此之外,量子硬件也在不断进步,PsiQuantum 等公司更是提出了开发百万量子比特的量子处理器目标。

随着深度学习和量子计算领域研究的继续进行,我们可以期待看到量子深度学习的进一步发展。

以上就是量子CNN对数据集的测试准确率高,但存在局限性的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/559634.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月10日 00:26:05
下一篇 2025年11月10日 00:27:20

相关推荐

  • 瑞达写作官方网站主链接 瑞达写作App官方使用通道

    瑞达写作官方网站主链接是https://ipapers.net/,该平台提供论文初稿生成、多形式内容输出、智能修改、问卷设计及参考文献自动引用等功能,覆盖多学科写作需求,支持跨学科专业类型,集成文献投喂、长文记忆、降重处理与一站式材料生成服务。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, …

    2025年12月6日 科技
    000
  • AI写真小程序轻松使用 AI写真智能创作平台

    AI写真小程序使用入口为https://www.aixiezhen.com,用户可上传照片选择风格模板,AI自动重绘生成艺术化图像,支持预览下载与社交分享,界面简洁、处理快速,保障数据安全与隐私。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜…

    2025年12月6日 科技
    000
  • AI写诗怎么实现_使用文心一言创作古典诗词步骤

    文心一言通过深度学习海量诗词数据,掌握格律、意象、情感表达模式,能根据具体指令生成古典诗词。其核心是基于统计关联理解“意境”与“情感”,如将“夕阳”“孤舟”与离愁关联,依赖Transformer模型捕捉上下文语义。用户需提供体裁、主题、情感、关键词等明确指令,通过多轮迭代修改,实现人机协同创作。AI…

    2025年12月5日
    000
  • 抖音点了取消推荐还能给人看到吗?如何更换转发人顺序?深度解析抖音推荐机制!

    当我们在抖音点击”取消推荐”时,视频并不会完全消失。平台的内容传播遵循着「双重可见性法则」:既受用户主动设置影响,也受算法推荐机制支配。 一、抖音内容推荐机制与可见性规则 1.1 基础推荐逻辑解析 抖音的推荐系统已升级为基于深度学习的“用户行为概率预测模型”。该机制不再依赖传统标签匹配,而是通过分析…

    2025年12月5日
    000
  • AI动画制作工具排行榜 能免费使用的10款AI动画制作工具推荐

    以下是10款免费的AI动画制作工具:1.智影:腾讯推出的在线视频制作平台,提供日漫风格,限时免费。2.Artflow:AI动画创建工具,Story Studio具有视频漫画生成功能,支持12种画面视觉风格。3.Flow Studio:通过文字生成视频片段,支持多种画面风格,新用户有200积分免费生成…

    2025年12月4日 科技
    000
  • Linux实现自动挂载autofs的方法详解

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 目录 实现自动挂载-autofs autofs工具简单使用 autofs配置详细说明 自动挂载资源有两种格式 优化Linux系统性能 安装Tuned 选择调整配置文件 检查系统推荐的调整配置文件…

    2025年12月4日
    000
  • BlenderMCP— 基于 MCP 集成的 3D 建模工具

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ MCP Market MCP Servers集合平台,帮你找到最好的MCP服务器 67 查看详情 BlenderMCP是什么 blendermcp是一种将blender与claude ai通过模…

    2025年12月4日 科技
    000
  • VSCode怎么出现波浪线_VSCode错误提示和语法检查功能说明教程

    VSCode中的波浪线是语言服务、Linter和编译器协同提供的实时反馈,红色表示错误(如语法错误),黄色表示警告(如未使用变量),绿色或下划线表示建议(如代码优化),通过悬停查看提示、检查配置文件(如tsconfig.json、.eslintrc)、使用“问题”面板(Ctrl+Shift+M)定位…

    2025年12月4日
    100
  • 美图秀秀智能抠图功能好用吗_美图秀秀智能抠图功能介绍

    美图秀秀智能抠图功能可快速精准分离照片主体与背景,支持自动识别、手动精细调整、更换背景及批量处理。1、打开应用选择图片,点击“智能抠图”自动分割主体;2、使用画笔、橡皮擦工具修正边缘,开启边缘平滑与羽化提升自然度;3、更换为纯色或自定义图片背景,调整主体位置大小,适配创意模板;4、启用批量抠图模式,…

    2025年12月3日
    500
  • 怎么让AI执行跨数据库SQL_AI操作不同数据库SQL方法

    AI需通过SQL解析、语法转换、多数据库连接与结果整合实现跨库操作。首先利用NLP和AST技术构建SQL知识库,理解不同数据库语法差异;再结合规则与机器学习模型完成SQL语句转换;随后通过数据库连接池或中间件(如SQLAlchemy)连接并执行查询;最后借助ETL工具或联邦查询引擎(如Presto)…

    2025年12月3日 数据库
    000
  • 使用AI执行SQL空间查询的方法_AI处理地理空间数据指南

    AI通过大语言模型将自然语言转化为含空间函数的SQL,实现非专业用户与地理空间数据库的高效交互。系统需完成意图捕获、语义解析、模式理解、函数映射与SQL生成,并依赖精准的数据库上下文、高质量Prompt、少量样本学习及人工反馈提升准确性;同时通过利用空间索引、避免N+1查询、引入优化器与缓存机制保障…

    2025年12月3日 数据库
    000
  • 如何用AI执行SQLJSON查询_AI操作JSON数据类型方法详解

    AI通过自然语言处理理解用户对JSON数据的查询意图,结合语义映射与上下文推理,智能选择JSON_VALUE、JSON_QUERY或JSON_TABLE等函数生成精准SQL语句,实现从模糊需求到精确查询的转换。 AI执行SQLJSON查询,核心在于它能够理解我们对非结构化或半结构化数据的意图,并将其…

    2025年12月3日 数据库
    000
  • AI自动优化SQL语句的方法是什么_AI优化与执行SQL代码流程

    AI自动优化SQL是通过语义分析、机器学习与强化学习技术,对SQL语句进行查询改写、索引推荐、执行计划预测、参数调优等多阶段智能迭代优化,结合历史数据与实时环境构建闭环工作流,在提升查询性能的同时面临上下文理解、模型更新、可解释性等挑战,需人机协同实现最佳效果。 AI自动优化SQL语句,说到底,就是…

    2025年12月3日 数据库
    000
  • 如何用AI执行SQL性能调优_AI分析与优化SQL执行计划

    AI通过分析SQL执行计划图结构与历史性能数据,利用机器学习识别全表扫描、低效连接等瓶颈,推荐索引优化、查询重写、参数调整等策略,并持续迭代提升数据库效率。 AI在SQL性能调优中,特别是对SQL执行计划的分析与优化,正逐渐展现出颠覆性的潜力。它能通过机器学习模型,自动识别执行计划中的效率瓶颈,并智…

    2025年12月3日 数据库
    000
  • 怎么让AI执行SQL全文检索_AI运行全文索引查询教程

    答案是利用AI结合NLP与数据库技术,将自然语言查询转化为高效SQL全文检索语句。首先通过NLU模型(如BERT)解析用户意图,识别关键词与逻辑关系;随后生成适配数据库的SQL语句,如MySQL的MATCH…AGAINST或SQL Server的CONTAINS;执行查询后以友好方式展示…

    2025年12月3日 数据库
    000
  • 豆包 AI 官网入口 豆包 AI 使用在线入口

    豆包 AI 的官网入口是 https://www.doubao.com/,使用攻略包括:1. 注册与登录:通过官网注册或第三方账号登录;2. 选择使用方式:网页版、PC 客户端、手机 APP、浏览器插件;3. 基础操作:直接对话、上传图片、使用智能体、保存对话;4. 提问技巧:问题具体化、提供背景信…

    2025年12月2日
    100
  • 豆包 AI 网页端入口 豆包 AI 网页端在线网址

    豆包 AI 网页端入口是 https://www.doubao.com/chat/。其特色功能包括:1. 智能问答,提供各领域的准确答案;2. 内容生成与辅助创作,支持写作和图像生成;3. 搜索与浏览辅助,优化搜索结果并提供网页摘要;4. 对话管理与分享,支持对话分组和分享;5. 本地图片编辑,提供…

    2025年12月2日
    000
  • 豆包 AI 手机客户端入口 豆包 AI 客户端在线入口

    安卓用户可通过应用商店下载或官网下载获取豆包AI客户端,iOS用户通过App Store获取。安装后,打开应用并注册登录即可使用。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 入口地址: 1、豆包ai手机客户端入口☜☜☜☜☜点击保存 2、…

    2025年12月2日
    000
  • b站官网在线观看_哔哩哔哩官方入口直达

    b站官网在线观看入口是https://www.bilibili.com,该平台汇聚动画、影视、知识、生活、音乐等多元内容,支持弹幕互动、用户投稿、创作激励等功能,构建了集观看、互动、创作为一体的综合性视频社区。 b站官网在线观看入口在哪里?这是不少网友都关注的,接下来由PHP小编为大家带来哔哩哔哩官…

    2025年12月2日 电脑教程
    000
  • LMDeploy— 上海AI Lab开源的大模型推理部署工具

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 天工大模型 中国首个对标ChatGPT的双千亿级大语言模型 115 查看详情 LMDeploy是什么 lmdeploy 是由上海人工智能实验室推出的一款专注于大模型推理与部署的高效工具,旨在显著…

    2025年12月2日 科技
    100

发表回复

登录后才能评论
关注微信