文本相似度计算比赛-预训练模型baseline,直接上90%

该文介绍百度架构师课程内置的文本相似度计算比赛方案,用ERNIE预训练模型,将文本匹配转为分类任务,拼接query和title为输入。使用54614条训练集、7802条验证集、15604条测试集,经数据处理、模型训练,首 epoch 验证集准确率超90%,无需调参,可作基线,最后输出结果为result.csv。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

文本相似度计算比赛-预训练模型baseline,直接上90% - 创想鸟

文本相似度计算比赛-使用预训练模型,直接上90%

比赛是百度架构师手把手带你零基础实践深度学习课程内置的比赛,似乎已经停止判分了.
训练集:54614条
验证集:7802条
测试集:15604条
本文改自『NLP经典项目集』02:使用预训练模型ERNIE优化情感分析
没有任何调参,所以作为预训练模型的baseline完全没问题

1. 任务介绍

1.1 任务内容

文本语义匹配是自然语言处理中一个重要的基础问题,NLP领域的很多任务都可以抽象为文本匹配任务。例如,信息检索可以归结为查询项和文档的匹配,问答系统可以归结为问题和候选答案的匹配,对话系统可以归结为对话和回复的匹配。语义匹配在搜索优化、推荐系统、快速检索排序、智能客服上都有广泛的应用。如何提升文本匹配的准确度,是自然语言处理领域的一个重要挑战。

信息检索:在信息检索领域的很多应用中,都需要根据原文本来检索与其相似的其他文本,使用场景非常普遍。新闻推荐:通过用户刚刚浏览过的新闻标题,自动检索出其他的相似新闻,个性化地为用户做推荐,从而增强用户粘性,提升产品体验。智能客服:用户输入一个问题后,自动为用户检索出相似的问题和答案,节约人工客服的成本,提高效率。

1.2 什么是文本匹配?

让我们来看一个简单的例子,比较各候选句子哪句和原句语义更相近

原句:“车头如何放置车牌”

比较句1:“前牌照怎么装”比较句2:“如何办理北京车牌”比较句3:“后牌照怎么装”

(1)比较句1与原句,虽然句式和语序等存在较大差异,但是所表述的含义几乎相同

(2)比较句2与原句,虽然存在“如何” 、“车牌”等共现词,但是所表述的含义完全不同

(3)比较句3与原句,二者讨论的都是如何放置车牌的问题,只不过一个是前牌照,另一个是后牌照。二者间存在一定的语义相关性。

所以语义相关性,句1大于句3,句3大于句2.这就是语义匹配。

1.3 使用预训练序列分类模型

本任务本是匹配工作,两个距离相似则是1,不相似则是0.这其实也可以看做一个分类任务,两个句子是相似的,则类别为1,两个句子不相似的,则类别为0.

本文使用的是一个文本分类的例子『NLP经典项目集』02:使用预训练模型ERNIE优化情感分析

通读全文后会发现,我们的主要任务其实变成了如何构建这样一句话,这里使用最简单的做法,直接将两个句子拼接
即,query和title直接拼接。文本相似度计算比赛-预训练模型baseline,直接上90% - 创想鸟        

加载第三方库,paddle和paddlenlp相关的库

In [ ]

import mathimport numpy as npimport osimport collectionsfrom functools import partialimport randomimport timeimport inspectimport importlibfrom tqdm import tqdmimport paddleimport paddle.nn as nnimport paddle.nn.functional as Ffrom paddle.io import IterableDatasetfrom paddle.utils.download import get_path_from_url

   

本实验需要依赖与paddlenlp,aistudio上的paddlenlp版本过低,所以需要首先升级paddlenlp

In [ ]

!pip install paddlenlp --upgrade

   

导入paddlenlp相关的包

In [ ]

import paddlenlp as ppnlpfrom paddlenlp.data import JiebaTokenizer, Pad, Stack, Tuple, Vocab# from utils import convert_examplefrom paddlenlp.datasets import MapDatasetfrom paddle.dataset.common import md5filefrom paddlenlp.datasets import DatasetBuilder

   

2. 定义模型和tokenizer

2.1 定义模型预训练

经过前面的分析,我们将两个句子拼成了一句话,然后转变成分类任务,所以这里使用序列分类模型.这里其实主要用的是model,那个ernie_model是为了帮助理解展示用的.

In [ ]

MODEL_NAME = "ernie-1.0"ernie_model = ppnlp.transformers.ErnieModel.from_pretrained(MODEL_NAME)model = ppnlp.transformers.ErnieForSequenceClassification.from_pretrained(MODEL_NAME, num_classes=2)

       

[2021-05-18 10:21:29,970] [    INFO] - Downloading https://paddlenlp.bj.bcebos.com/models/transformers/ernie/ernie_v1_chn_base.pdparams and saved to /home/aistudio/.paddlenlp/models/ernie-1.0[2021-05-18 10:21:29,973] [    INFO] - Downloading ernie_v1_chn_base.pdparams from https://paddlenlp.bj.bcebos.com/models/transformers/ernie/ernie_v1_chn_base.pdparams100%|██████████| 392507/392507 [00:09<00:00, 43038.06it/s][2021-05-18 10:21:45,369] [    INFO] - Weights from pretrained model not used in ErnieModel: ['cls.predictions.layer_norm.weight', 'cls.predictions.decoder_bias', 'cls.predictions.transform.bias', 'cls.predictions.transform.weight', 'cls.predictions.layer_norm.bias'][2021-05-18 10:21:45,675] [    INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-1.0/ernie_v1_chn_base.pdparams/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1297: UserWarning: Skip loading for classifier.weight. classifier.weight is not found in the provided dict.  warnings.warn(("Skip loading for {}. ".format(key) + str(err)))/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1297: UserWarning: Skip loading for classifier.bias. classifier.bias is not found in the provided dict.  warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

       

2.2 定义一个模型对应的tokenizer

In [ ]

tokenizer = ppnlp.transformers.ErnieTokenizer.from_pretrained(MODEL_NAME)

       

[2021-05-18 10:21:47,430] [    INFO] - Downloading vocab.txt from https://paddlenlp.bj.bcebos.com/models/transformers/ernie/vocab.txt100%|██████████| 90/90 [00:00<00:00, 4144.52it/s]

       

按照官方例子,测试一下我们的句子吧

In [ ]

tokens = tokenizer._tokenize("万家乐燃气热水器怎么样")print("Tokens: {}".format(tokens))# token映射为对应token idtokens_ids = tokenizer.convert_tokens_to_ids(tokens)print("Tokens id: {}".format(tokens_ids))# 拼接上预训练模型对应的特殊token ,如[CLS]、[SEP]tokens_ids = tokenizer.build_inputs_with_special_tokens(tokens_ids)print("Tokens id: {}".format(tokens_ids))# 转化成paddle框架数据格式tokens_pd = paddle.to_tensor([tokens_ids])print("Tokens : {}".format(tokens_pd))# 此时即可输入ERNIE模型中得到相应输出sequence_output, pooled_output = ernie_model(tokens_pd)print("Token wise output: {}, Pooled output: {}".format(sequence_output.shape, pooled_output.shape))

       

Tokens: ['万', '家', '乐', '燃', '气', '热', '水', '器', '怎', '么', '样']Tokens id: [211, 50, 354, 1404, 266, 506, 101, 361, 936, 356, 314]Tokens id: [1, 211, 50, 354, 1404, 266, 506, 101, 361, 936, 356, 314, 2]Tokens : Tensor(shape=[1, 13], dtype=int64, place=CUDAPlace(0), stop_gradient=True,       [[1  , 211, 50 , 354, 1404, 266, 506, 101, 361, 936, 356, 314, 2  ]])Token wise output: [1, 13, 768], Pooled output: [1, 768]

       

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/tensor/creation.py:143: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations  if data.dtype == np.object:

       In [ ]

encoded_text = tokenizer(text="万家乐燃气热水器怎么样",  max_seq_len=20)for key, value in encoded_text.items():    print("{}:nt{}".format(key, value))# 转化成paddle框架数据格式input_ids = paddle.to_tensor([encoded_text['input_ids']])print("input_ids : {}".format(input_ids))segment_ids = paddle.to_tensor([encoded_text['token_type_ids']])print("token_type_ids : {}".format(segment_ids))# 此时即可输入ERNIE模型中得到相应输出sequence_output, pooled_output = ernie_model(input_ids, segment_ids)print("Token wise output: {}, Pooled output: {}".format(sequence_output.shape, pooled_output.shape))

       

input_ids:[1, 211, 50, 354, 1404, 266, 506, 101, 361, 936, 356, 314, 2]token_type_ids:[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]input_ids : Tensor(shape=[1, 13], dtype=int64, place=CUDAPlace(0), stop_gradient=True,       [[1  , 211, 50 , 354, 1404, 266, 506, 101, 361, 936, 356, 314, 2  ]])token_type_ids : Tensor(shape=[1, 13], dtype=int64, place=CUDAPlace(0), stop_gradient=True,       [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])Token wise output: [1, 13, 768], Pooled output: [1, 768]

       

3. 数据读取

3.1 load_dataset函数

本实验共计需要读取四份数据: 训练集 train.tsv、验证集 dev.tsv、测试集 test.tsv 和 词汇表 vocab.txt。加载数据的代码如下: 这里是课程提供的,不需要修改

In [ ]

class BAIDUData2(DatasetBuilder):    SPLITS = {        # 'train':os.path.join('data', 'baidu_train.tsv'),        # 'dev': os.path.join('data', 'baidu_dev.tsv'),        'train': 'baidu_train.tsv',        'dev': 'baidu_dev.tsv',    }    def _get_data(self, mode, **kwargs):        filename = self.SPLITS[mode]        return filename    def _read(self, filename):        """读取数据"""        with open(filename, 'r', encoding='utf-8') as f:            head = None            for line in f:                data = line.strip().split("t")                if not head:                    head = data                else:                    query, title, label = data                    yield {"query": query, "title": title, "label": label}    def get_labels(self):        return ["0", "1"]

   In [ ]

def load_dataset(name=None,                 data_files=None,                 splits=None,                 lazy=None,                 **kwargs):       reader_cls = BAIDUData2    print(reader_cls)    if not name:        reader_instance = reader_cls(lazy=lazy, **kwargs)    else:        reader_instance = reader_cls(lazy=lazy, name=name, **kwargs)    datasets = reader_instance.read_datasets(data_files=data_files, splits=splits)    return datasets

   In [ ]

# Loads dataset.train_ds, dev_ds = load_dataset(splits=["train", "dev"])

       


       

3.2 前处理:拼接句子

主要针对我们的任务,修改convert_example函数,在这个里面,将query和title拼接,并转成token,convert_example这个在utils.py中123行

In [ ]

from functools import partialfrom paddlenlp.data import Stack, Tuple, Padfrom utils import  convert_example, create_dataloaderbatch_size = 32max_seq_length = 128trans_func = partial(    convert_example,    tokenizer=tokenizer,    max_seq_length=max_seq_length)batchify_fn = lambda samples, fn=Tuple(    Pad(axis=0, pad_val=tokenizer.pad_token_id),  # input    Pad(axis=0, pad_val=tokenizer.pad_token_type_id),  # segment    Stack(dtype="int64")  # label): [data for data in fn(samples)]

   In [ ]

train_data_loader = create_dataloader(    train_ds,    mode='train',    batch_size=batch_size,    batchify_fn=batchify_fn,    trans_fn=trans_func)dev_data_loader = create_dataloader(    dev_ds,    mode='dev',    batch_size=batch_size,    batchify_fn=batchify_fn,    trans_fn=trans_func)

   

4. 定义一些超参,loss,优化器等

In [ ]

from paddlenlp.transformers import LinearDecayWithWarmup# 训练过程中的最大学习率learning_rate = 5e-5 # 训练轮次epochs = 4# 学习率预热比例warmup_proportion = 0.1# 权重衰减系数,类似模型正则项策略,避免模型过拟合weight_decay = 0.01num_training_steps = len(train_data_loader) * epochslr_scheduler = LinearDecayWithWarmup(learning_rate, num_training_steps, warmup_proportion)optimizer = paddle.optimizer.AdamW(    learning_rate=lr_scheduler,    parameters=model.parameters(),    weight_decay=weight_decay,    apply_decay_param_fun=lambda x: x in [        p.name for n, p in model.named_parameters()        if not any(nd in n for nd in ["bias", "norm"])    ])criterion = paddle.nn.loss.CrossEntropyLoss()metric = paddle.metric.Accuracy()

   

5. 开始训练,可以看到第一个epoch在eval上就上90%了

In [12]

import paddle.nn.functional as Ffrom utils import evaluateglobal_step = 0for epoch in range(1, epochs + 1):    for step, batch in enumerate(train_data_loader, start=1):        input_ids, segment_ids, labels = batch        logits = model(input_ids, segment_ids)        loss = criterion(logits, labels)        probs = F.softmax(logits, axis=1)        correct = metric.compute(probs, labels)        metric.update(correct)        acc = metric.accumulate()        global_step += 1        if global_step % 10 == 0 :            print("global step %d, epoch: %d, batch: %d, loss: %.5f, acc: %.5f" % (global_step, epoch, step, loss, acc))        loss.backward()        optimizer.step()        lr_scheduler.step()        optimizer.clear_grad()    evaluate(model, criterion, metric, dev_data_loader)

   

保存模型

In [ ]

model.save_pretrained('checkpoint2')tokenizer.save_pretrained('checkpoint2')

   

6.测试结果,输出csv

In [ ]

from utils import predictimport pandas as pdlabel_map = {0:'0', 1:'1'}def preprocess_prediction_data(data):    examples = []    for query, title in data:        examples.append({"query": query, "title": title})        #print(len(examples),': ',query,"---", title)    return examplestest_file = 'test_forstu.tsv'data = pd.read_csv(test_file, sep='t')#print(data.shape)data1 = list(data.values)examples = preprocess_prediction_data(data1)

   In [ ]

results = predict(        model, examples, tokenizer, label_map, batch_size=batch_size)for idx, text in enumerate(examples):    print('Data: {} t Label: {}'.format(text, results[idx]))data2 = []for i in range(len(data1)):    data2.extend(results[i])data['label'] = data2print(data.shape)data.to_csv('result.csv',sep='t')

   

最后提交结果就生成的result.csv文件就可以啦.

以上就是文本相似度计算比赛-预训练模型baseline,直接上90%的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/56428.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月10日 00:56:53
下一篇 2025年11月10日 00:57:31

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 为什么自定义样式表在 Safari 中访问百度时无效?

    自定义样式表在 Safari 中无效的问题 你在 Safari 偏好设置中自定义的样式表无法在某些网站(例如百度)上生效,这是为什么呢? 原因在于,你创建的样式表应用于本地文件路径,而百度是一个远程网站,位于互联网上。 在访问本地项目时,文件协议(file://)会允许你访问本地计算机上的文件。所以…

    2025年12月24日
    300
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • 为什么自定义样式表在 Safari 中访问百度页面时无法生效?

    自定义样式表在 safari 中失效的原因 用户尝试在 safari 偏好设置中添加自定义样式表,代码如下: body { background-image: url(“/users/luxury/desktop/wallhaven-o5762l.png”) !important;} 测试后发现,在…

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200

发表回复

登录后才能评论
关注微信