教ChatGPT学会看图的方法来了

2022年流行“文生图”模型,那2023年流行什么?

机器学习工程师Daniel Bourke的答案是:反过来!

这不,一个最新发布的“图生文”模型在网上爆火,其优秀的效果引发众多网友纷纷转发、点赞。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

图片

不仅是基础的“看图说话”功能,写情诗、讲解剧情、给图片中对象设计对话等等,这个AI都拿捏得稳稳的!

比如,当你在网上刷到诱人的美食时,只需把图片发给它,它就会立马识别出需要的食材和做菜步骤:

图片

甚至图片中的一些列文虎克的细节也能“看”得清清楚楚。

当被问到如何才能从图片中倒着的房子里离开,AI的回答是:侧面不是有滑梯嘛!

图片

这只新AI名为BLIP-2 (Bootstrapping Language-Image Pre-training 2),目前代码已开源。

最重要的是,和以前的研究不同,BLIP-2使用的是一种通用的预训练框架,因此可以任意对接自己的语言模型。

有网友已经在畅想把接口换成ChatGPT后的强强组合了。

图片

作者之一Steven Hoi更是放话:BLIP-2未来就是“多模态版ChatGPT”。

图片

那么,BLIP-2神奇的地方还有哪些?一起往下看。

理解能力一流

BLIP-2的玩法可以说非常多样了。

只需提供一张图片,你就可以与它对话,让它看图讲故事、推理、生成个性化文本等各种要求都能满足。

举个例子,BLIP-2不仅能轻松识别图片中的景点是长城,还能介绍出长城的历史:

中国的长城是公元前221年秦始皇为了保护帝都不受北方侵略而建造的。

图片

给它一张电影剧照,BLIP-2不光知道出自哪,还知道故事的结局是be:泰坦尼克号沉没,男主淹死。

图片

在对人类神态的拿捏上,BLIP-2同样把握得非常准确。

被问到这张图片中的男人是什么表情,他为什么这样时,BLIP-2的回答是:他害怕那只鸡,因为它正朝他飞来。

图片

更神奇的是,在许多开放性问题上,BLIP-2的表现也很出色。

让它根据下面的图片写一句浪漫的话:

图片

它的回答是这样的:爱情就像日落,很难预见它的到来,但当它发生时,它是如此的美丽。

图片

这不光理解能力满分,文学造诣也相当强啊!

图片

StudyCorgi ChatGPT Detector StudyCorgi ChatGPT Detector

StudyCorgi推出的帮助学生检测ChatGPT的工具

StudyCorgi ChatGPT Detector 14 查看详情 StudyCorgi ChatGPT Detector

让它给图片中的两只动物生成一段对话,BLIP-2也能轻松拿捏傲娇猫猫x蠢萌狗狗的设定:

猫: 嘿,狗狗,我能骑在你背上吗?

狗: 当然,为什么不呢?

猫: 我已经厌倦了在雪地里行走。

图片

那么,如此强大的理解能力背后,BLIP-2究竟是怎么做到的?

多项视觉语言任务上实现新SOTA

考虑到大规模模型的端到端训练成本越来越高,BLIP-2使用的是一种通用且高效的预训练策略:

从现成的冻结预训练图像编码器和冻结的大型语言模型中引导视觉语言预训练。

这也意味着,每个人都可以选择自己想用的模型接入使用。

而为了弥补了模态之间的差距,研究者提出了一个轻量级的查询Transformer。

该Transformer分两个阶段进行预训练:

第一阶段从冻结图像编码器引导视觉语言表示学习,第二阶段将视觉从冻结的语言模型引导到语言生成学习。

图片

为了测试BLIP-2的性能,研究人员分别从零样本图像-文本生成、视觉问答、图像-文本检索、图像字幕任务上对其进行了评估。

最终结果显示,BLIP-2在多项视觉语言任务上都实现了SOTA。

图片

其中,BLIP-2在zero-shot VQAv2上比Flamingo 80B高8.7%,且训练参数还减少了54倍。

而且显而易见的是,更强的图像编码器或更强的语言模型都会产生更好的性能。

图片

值得一提的是,研究者在论文最后也提到,BLIP-2还存在一个不足,那就是缺乏上下文学习能力:

每个样本只包含一个图像-文本对,目前还无法学习单个序列中多个图像-文本对之间的相关性。

研究团队

BLIP-2的研究团队来自Salesforce Research。

图片

第一作者为Junnan Li,他也是一年前推出的BLIP的一作。

目前是Salesforce亚洲研究院高级研究科学家。本科毕业于香港大学,博士毕业于新加坡国立大学。

研究领域很广泛,包括自我监督学习、半监督学习、弱监督学习、视觉-语言。

以下是BLIP-2的论文链接和GitHub链接,感兴趣的小伙伴们可以自取~

​论文链接:https://arxiv.org/pdf/2301.12597.pdf

GitHub链接:https://github.com/salesforce/LAVIS/tree/main/projects/blip2

参考链接:[1]https://twitter.com/mrdbourke/status/1620353263651688448

[2]​https://twitter.com/LiJunnan0409/status/1620259379223343107

以上就是教ChatGPT学会看图的方法来了的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/565662.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月10日 03:15:00
下一篇 2025年11月10日 03:17:11

相关推荐

  • XML验证的基本方法有哪些?

    XML验证通过DTD、XSD和Schematron确保XML文档结构和数据符合预设规则。DTD语法简单但功能有限,适用于简单场景;XSD支持丰富数据类型和命名空间,是主流选择;Schematron用XPath表达复杂业务逻辑,补充XSD不足。选择时应根据需求:XSD适合大多数项目,DTD用于简单或遗…

    2025年12月17日
    000
  • RSS如何实现动态内容过滤?

    要实现rss动态内容过滤,核心在于引入“智能代理”对原始feed进行二次处理。具体路径包括:1.使用内置过滤功能的rss阅读器,如feedly、inoreader等,适合简单筛选;2.借助ifttt或zapier等自动化平台作为中间件,支持条件判断和内容分发;3.自建解析器,利用python、nod…

    2025年12月17日
    000
  • Python AsyncElasticsearch 异步批量操作实践

    本教程旨在指导开发者如何在Python中使用AsyncElasticsearch客户端高效执行异步批量操作。针对helpers.actions.bulk不支持异步客户端的问题,文章详细介绍了如何利用elasticsearch.helpers.async_bulk这一专为异步设计的辅助函数,实现数据的…

    2025年12月14日
    000
  • ChatGPT冲击下,国内技术问答社区如何突围?

    ChatGPT的崛起对全球技术问答社区造成了巨大冲击,Stack Overflow的困境更是敲响了警钟。国内技术问答平台,例如SegmentFault,也面临着同样的挑战。它们该如何应对呢? SegmentFault长期以来专注于为开发者提供高质量的技术问答服务,并不断优化用户体验。这包括持续改进平…

    2025年12月13日
    000
  • Flask流式传输如何模拟ChatGPT的实时响应?

    使用Flask流式传输模拟ChatGPT实时响应 许多应用,例如模拟ChatGPT的实时聊天或大型文件下载,都需要边生成边传输数据,避免客户端长时间等待。本文演示如何在Python Flask框架中实现这种流式传输,并修正原代码中的缺陷。 原代码尝试使用yield实现流式传输,但由于response…

    2025年12月13日
    000
  • Flask如何实现类似ChatGPT的实时数据流传输?

    使用Flask框架构建实时数据流:模拟ChatGPT响应 在Flask Web应用开发中,常常需要模拟ChatGPT的实时数据传输效果,即数据生成的同时即时传输给客户端,而非等待所有数据生成完毕再一起发送。本文将介绍如何利用Flask实现这种流式传输,并解决传统方法中存在的延迟问题。 传统方法的问题…

    2025年12月13日
    000
  • Flask如何实现类似ChatGPT的实时流式响应?

    使用Flask模拟ChatGPT的实时流式响应 许多开发者希望在Flask应用中实现类似ChatGPT的实时响应效果:内容生成过程中持续传输给客户端。然而,简单的Flask response 对象无法满足此需求,它会等待生成器函数完全执行后才发送结果。本文探讨如何利用Flask框架实现真正的流式传输…

    2025年12月13日
    000
  • ChatGPT冲击下,SegmentFault的生存策略是什么?

    ChatGPT的崛起对开发者社区带来了巨大冲击,Stack Overflow的困境已敲响警钟。SegmentFault作为国内领先的开发者社区,如何应对ChatGPT带来的挑战,确保自身持续发展? SegmentFault的核心竞争力在于庞大的中文开发者用户群体和高质量的技术问答内容。然而,Chat…

    2025年12月13日
    000
  • 如何通过 ADB 控制小米手机进行长截图并保存到手机上?

    ADB控制小米手机长截图:探索与实践 许多Android用户需要截取超出屏幕范围的内容,特别是包含滚动内容的页面。本文探讨如何利用ADB (Android Debug Bridge) 在小米手机上实现长截图并保存到手机。目标是截取1600×720分辨率屏幕的完整内容,生成3200&#215…

    2025年12月13日
    000
  • ChatGPT时代,技术问答社区思否如何应对挑战?

    ChatGPT浪潮下,技术问答社区思否(SegmentFault)如何突围? Stack Overflow近期面临挑战,其CEO公开承认公司正经历艰难时期,这与ChatGPT等大型语言模型的崛起息息相关。那么,作为另一个重要的技术问答社区,思否将如何应对这一挑战呢? 本文将分析思否可能的应对策略。参…

    2025年12月13日
    000
  • Flask框架下如何实现ChatGPT式的流式文本传输?

    使用Flask框架构建类似ChatGPT的流式文本传输应用 许多开发者希望利用Flask框架创建类似ChatGPT的应用,实现文本内容的实时生成和传输。然而,Flask的response对象并非为这种场景设计,它会在生成器函数完全执行后才开始返回数据。本文将介绍如何使用Flask的stream_wi…

    2025年12月13日
    000
  • Python的GIL:究竟是作用于整个进程还是每个线程?

    python全局解释器锁(gil)详解:作用范围及误区 Python的GIL (全局解释器锁) 限制了多线程程序的性能,但其作用范围常常被误解。本文将澄清GIL究竟作用于进程还是线程。 许多Python开发者对GIL有所了解,但关于GIL是否作用于每个线程,存在疑问。 这种疑问可能源于与AI模型(例…

    2025年12月13日
    000
  • ChatGPT时代,SegmentFault如何应对开发者问答社区的挑战?

    大型语言模型(LLM)如ChatGPT的崛起,给开发者问答社区带来了前所未有的挑战。Stack Overflow的困境已为业界敲响警钟。那么,SegmentFault将如何应对ChatGPT带来的冲击,保持其在开发者社区中的领先地位呢? ChatGPT能够快速生成代码和答案,这无疑会对Segment…

    2025年12月13日
    000
  • Flask框架如何实现类似ChatGPT的实时流式数据传输?

    使用Flask框架构建实时流式数据传输,如同ChatGPT的即时响应 许多开发者希望在Flask应用中实现类似ChatGPT的实时响应效果:数据生成的同时即时传输给客户端。然而,简单的yield语句无法直接实现这一目标。本文深入探讨如何利用Flask框架高效实现这种流式传输。 问题在于,之前的代码片…

    2025年12月13日
    000
  • Python的GIL:一个进程只有一个,还是每个线程都有一个?

    python全局解释器锁(gil)的真相:只有一个,而非每个线程一个 关于Python的GIL(全局解释器锁),一个常见的误解是它是否每个线程都拥有一个。 事实并非如此。Python进程只有一个GIL。 许多Python开发者对GIL的运作机制有所了解,但一些细节容易混淆。最近,一个截图(此处略去)…

    2025年12月13日
    000
  • 为什么科学家们最初选择Python而非JavaScript进行科学计算?

    Python在科学计算领域的统治地位:从最初的选择到如今的广泛应用 Python在科学计算领域的广泛应用,常常令专注于Web开发并习惯使用JavaScript的开发者感到疑惑。近期ChatGPT源码采用Python编写,更是加剧了这种好奇。JavaScript凭借其丰富的库和框架,在Web开发领域占…

    2025年12月13日
    000
  • Python的全局解释器锁(GIL)究竟作用于进程还是线程?

    Python 全局解释器锁 (GIL) 的作用范围:一个进程只有一个 GIL。 关于 Python 的 GIL 作用范围,存在一些误解。有人认为 GIL 作用于每个线程,也有人认为它作用于整个进程。本文将澄清这个疑问。 Python 的 GIL 仅作用于整个进程,且只有一个 GIL 实例。 这意味着…

    2025年12月13日
    000
  • 为什么科学计算领域偏爱Python而非JavaScript?

    Python在科学计算领域的统治地位:一个前端开发者的视角 ChatGPT源码的公开,让许多前端开发者,例如提问者,开始关注Python在科学计算领域的广泛应用。提问者注意到JavaScript凭借其丰富的库在Web开发中占据主导地位,却好奇为什么科学计算领域偏爱Python。这不仅仅是因为Pyth…

    2025年12月13日
    000
  • 有没有想过像您一样的AI“看到”?初学者&#s注意指南

    在大型语言模型中了解注意力:初学者指南 >您是否曾经想过chatgpt或其他ai模型如何能够很好地理解和响应您的消息?秘密在于一种称为注意的机制 – 一种关键组成部分,可帮助这些模型理解单词之间的关系并产生有意义的响应。让我们简单地将其分解! > 什么是关注? 想象您正在读一…

    2025年12月13日
    000
  • AI模型的兴起,能够在各个行业创建内容,设计和解决方案

    引言 人工智能(AI)已不再是遥不可及的未来科技,它正深刻地改变着当今各行各业。先进的AI模型的出现,彻底革新了企业的内容创作、产品设计以及创新解决方案的开发模式。从AI写作助手到自动化图形设计工具,再到智能化业务解决方案,AI正以前所未有的方式改变着我们的工作方式和人机交互模式。 AI如何重塑内容…

    2025年12月13日
    000

发表回复

登录后才能评论
关注微信