首先运行示例图像测试OCR识别效果,准备涵盖清晰文档、模糊截图、复杂背景、中英文混合的代表性图像;接着在项目目录执行Python命令调用检测与识别模型,如python tools/infer/predict_system.py并配置对应模型路径;执行后检查输出文本、检测框坐标及置信度,确认中文标点、数字、英文识别准确性;通过对比真实文本计算字符准确率、行级准确率和检测召回率,结合日志排查错误并优化参数,最终以实际表现评估部署效果。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

部署完DeepSeekOCR后,测试识别效果是验证系统是否正常工作的关键步骤。直接运行示例图像进行文本识别,观察输出结果的准确性和稳定性,是最常见的验证方式。
准备测试图像
选择几张具有代表性的图像用于测试,确保覆盖不同场景:
清晰打印文字的文档图像 模糊或低分辨率的截图 包含复杂背景或倾斜排版的图片 中英文混合内容的图像
这些图像能帮助你全面评估OCR在实际使用中的表现。
运行本地识别命令
进入部署好的DeepSeekOCR项目目录,使用Python脚本调用OCR模型处理测试图像。例如:
python tools/infer/predict_system.py –image_dir=”./test_images/” –det_model_dir=”./inference/ch_PP-OCRv4_det_infer/” –rec_model_dir=”./inference/ch_PP-OCRv4_rec_infer/” –cls_model_dir=”./inference/ch_ppocr_mobile_v2.0_cls_infer/” –use_angle_cls=True –use_gpu=False
根据你的模型路径和配置修改参数。执行后,系统会输出每张图的检测框坐标、识别文本及置信度。
查看输出结果与日志
识别完成后,检查输出文件夹中的结果文件(通常是txt或json格式),重点关注:
白瓜面试
白瓜面试 – AI面试助手,辅助笔试面试神器
40 查看详情
文本内容是否正确识别 中文标点、数字、英文拼写是否有误 低质量图像下的漏检或误检情况
同时查看控制台日志,确认无报错信息,GPU/CPU资源占用正常。
手动对比与量化评估
将OCR输出结果与原始图像中的真实文本逐一对比,计算准确率。可按以下方式简单评估:
字符准确率:正确识别字符数 / 总字符数 行级准确率:整行完全匹配的行数 / 总行数 检测召回率:成功检出的文字框数量 / 实际文字块数量
对于关键业务场景,建议建立小型测试集,定期回归测试。
基本上就这些。通过多轮测试调整参数,比如置信度阈值、预处理方式,能进一步提升识别效果。本地部署的成功与否,最终要看实际识别表现是否满足需求。
以上就是DeepSeekOCR本地部署后怎么测试识别效果_DeepSeekOCR本地部署测试与效果验证方法的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/572183.html
微信扫一扫
支付宝扫一扫