『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例

本项目选择的超分模型是 ESRGAN、LESRCNN、DRN,在迭代50000轮后,通过“训练时长”、“PSNR”、“SSIM”三个指标以及生成的图像清晰度来进行三者的数值与效果对比。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

『行远见大』图像超分效果对比,以esrgan、lesrcnn、drn模型为例 - 创想鸟

『行远见大』图像超分效果对比,以 ESRGAN、LESRCNN、DRN 模型为例

项目简介

本项目选择的超分模型是 ESRGAN、LESRCNN、DRN,在迭代50000轮后,通过“训练时长”、“PSNR”、“SSIM”三个指标以及生成的图像清晰度来进行三者的数值与效果对比。

向开源致敬!

大家好,我是行远见大。欢迎你与我一同建设飞桨开源社区,知识分享是一种美德,让我们向开源致敬!

项目环境配置

In [ ]

import paddleprint("本项目基于Paddle的版本号为:"+ paddle.__version__)

       

本项目基于Paddle的版本号为:2.0.2

       

安装PaddleGAN

PaddleGAN的安装目前支持Clone GitHub和Gitee两种方式:

In [ ]

# 安装ppgan# 当前目录在: /home/aistudio/, 这个目录也是左边文件和文件夹所在的目录# 克隆最新的PaddleGAN仓库到当前目录# !git clone https://github.com/PaddlePaddle/PaddleGAN.git# 如果从github下载慢可以从gitee clone:!git clone https://gitee.com/paddlepaddle/PaddleGAN.git# 安装Paddle GAN%cd PaddleGAN/!pip install -v -e .

   

数据准备

本项目使用处理好的超分数据集卡通画超分数据集。

In [ ]

# 回到/home/aistudio/下%cd /home/aistudio# 解压数据!unzip -q data/data80790/animeSR.zip -d data/# 将解压后的数据链接到` /home/aistudio/PaddleGAN/data `目录下!mv data/animeSR PaddleGAN/data/

   

数据集的组成形式

    PaddleGAN      ├── data          ├── animeSR                ├── train                ├── train_X4                ├── test                └── test_X4

       

训练数据集包括400张卡通画,其中train中是高分辨率图像,train_X4中是对应的4倍缩小的低分辨率图像。测试数据集包括20张卡通画,其中test中是高分辨率图像,test_X4中是对应的4倍缩小的低分辨率图像。

数据可视化

In [ ]

import osimport cv2import numpy as npimport matplotlib.pyplot as plt# 训练数据统计train_names = os.listdir('PaddleGAN/data/animeSR/train')print(f'训练集数据量: {len(train_names)}')# 测试数据统计test_names = os.listdir('PaddleGAN/data/animeSR/test')print(f'测试集数据量: {len(test_names)}')# 训练数据可视化img = cv2.imread('PaddleGAN/data/animeSR/train/Anime_1.jpg')img = img[:,:,::-1]plt.figure()plt.imshow(img)plt.show()

       

训练集数据量: 400测试集数据量: 20

       

               

超分模型介绍

本项目使用到的模型有:

增强型超分辨率生成对抗网络 ESRGAN :Enhanced Super-Resolution Generative Adversarial Networks

盲超分辨模型 LESRCNN :Lightweight Image Super-Resolution with Enhanced CNN

对偶回归网络 DRN :Dual Regression Networks

增强型超分辨率生成对抗网络 ESRGAN 模型结构

为了进一步提高SRGAN恢复图像质量,对生成器G的结构做了两个改进:

1)去除掉所有的BN层。

2)提出用残差密集块(RRDB)代替原始基础块,其结合了多层残差网络和密集连接。

去除BN层已经被证明有助于增强性能和减少计算复杂度在不同的PSNR-oriented任务,包括SR和去模糊。

BN层在训练期间使用批次的均值和方差对特征进行归一化,在测试期间使用整个训练数据集的估计均值和方差。

当训练和测试数据集的统计数据差异很大时,BN层往往引入不适的伪影,限制了泛化能力。

       『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟        『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟        
ESRGAN 模型示意图
       

盲超分辨模型 LESRCNN 模型结构

LESRCNN由信息提取和增强块(IEEB)、重构块(RB)和信息提纯块(IRB)组成。

IEEB: IEEB能提取层次的低频特征和逐步加强获得特征的作用来增强网络浅层对深层的记忆能力。为了移除冗余的低频特征,3×3和1×1卷积组成的异构结构应用到IEEB中。

RB: 因为SR任务目标是把低分辨率图像转换为高分辨率图像,所以RB能通过子像素卷积技术把低频特征转换为高频特征。

为了防止原始输入低频图像在转换过程中丢失重要信息,RB通过融合局部和全局特征来解决网络长期依赖问题。

       『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟        
LESRCNN 模型示意图
       

对偶回归网络 DRN 模型结构

一开始我以为这是图像分割课上学的 Dilated Residual Networks(扩张残留网络),但写着写着总感觉哪里不对。

看到这篇文章后才知道 DRN 应该是 Dual Regression Networks(对偶回归网络)。

       『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟        
DRN 效果示意图
       
       

原始映射网络(比如传统SISR,LR→HR)和逆映射网络(HR→LR):遵循下采样,再上采样的U形设计。每个包含一个log2(s)的块,s是尺度因子。这意味着,放大4倍,需要2个块,8倍就要3个块。与原始U形设计(就是改进)不同,我们使用B剩余通道注意块(RCAB)来构建每个基本块,以提高模型容量。在此之后我们添加额外的输出来生成相应比例的图像(即1×、2×、4×图像),并将所提出的损失应用于这些图像来训练模型。在输入网络之前,图片用Bicubic放大对应尺寸。

DRN 的逆映射网络,就是为了从HR中学到一个下采样模型,它比原始映射简单,用了2个卷积,一个ReLU激活函数。

       『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟        
DRN 模型示意图
       

修改选中模型的配置文件

所有模型的配置文件均在/home/aistudio/PaddleGAN/configs目录下。

找到你需要的模型的配置文件,修改模型参数,一般修改迭代次数,num_workers,batch_size以及数据集路径。

有能力的同学也可以尝试修改其他参数,或者基于现有模型进行二次开发,模型代码在/home/aistudio/PaddleGAN/ppgan/models目录下。

找到/home/aistudio/PaddleGAN/configs目录,修改配置文件_psnr_x4_div2k.yaml中的

参数total_iters设置为50000

参数dataset:train:num_workers设置为4

参数dataset:train:batch_size设置为16

参数dataset:train:gt_folder改为data/animeSR/train

参数dataset:train:lq_folder改为data/animeSR/train_X4

参数dataset:test:gt_folder改为data/animeSR/test

参数dataset:test:lq_folder改为data/animeSR/test_X4

参数periods: [… , … , … , …]periods的数字总和要等于total_iters的数值

增强型超分辨率生成对抗网络 ESRGAN

训练 ESRGAN_PSNR 模型

『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟        
ESRGAN_PSNR 模型50000轮,用时约5.7小时
       In [20]

%cd /home/aistudio/PaddleGAN/!python -u tools/main.py --config-file configs/esrgan_psnr_x4_div2k.yaml

   

测试 ESRGAN_PSNR 模型

运行/home/aistudio/pretrained_model/ESRGAN_PSNR_50000_weight.pdparams代码测试 ESRGAN 模型。

In [21]

%cd /home/aistudio/PaddleGAN/!python tools/main.py --config-file configs/esrgan_psnr_x4_div2k.yaml --evaluate-only --load /home/aistudio/pretrained_model/esrgan_iter_50000_weight.pdparams

       

[04/28 08:59:29] ppgan.engine.trainer INFO: Test iter: [0/20][04/28 08:59:56] ppgan.engine.trainer INFO: Test iter: [10/20][04/28 09:00:18] ppgan.engine.trainer INFO: Metric psnr: 25.4030[04/28 09:00:18] ppgan.engine.trainer INFO: Metric ssim: 0.7585

       

盲超分辨模型 LESRCNN

训练 LESRCNN_PSNR 模型

『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟        
LESRCNN_PSNR 模型50000轮,用时约2.3小时
       In [ ]

%cd /home/aistudio/PaddleGAN/!python -u tools/main.py --config-file configs/lesrcnn_psnr_x4_div2k.yaml

   

测试 LESRCNN_PSNR 模型

运行/home/aistudio/pretrained_model/LESRCNN_PSNR_50000_weight.pdparams代码测试 LESRCNN 模型。

In [ ]

%cd /home/aistudio/PaddleGAN/!python tools/main.py --config-file configs/lesrcnn_psnr_x4_div2k.yaml --evaluate-only --load /home/aistudio/pretrained_model/lesrcnn_iter_50000_weight.pdparams

       

[04/28 00:23:30] ppgan.engine.trainer INFO: Test iter: [0/20][04/28 00:24:19] ppgan.engine.trainer INFO: Metric psnr: 24.9379[04/28 00:24:19] ppgan.engine.trainer INFO: Metric ssim: 0.7457

       

对偶回归网络 DRN

训练 DRN_PSNR 模型

『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟        
DRN_PSNR 模型50000轮,用时约5.4小时
       In [ ]

%cd /home/aistudio/PaddleGAN/!python -u tools/main.py --config-file configs/drn_psnr_x4_div2k.yaml

   

测试 DRN_PSNR 模型

运行/home/aistudio/pretrained_model/DRN_PSNR_50000_weight.pdparams代码测试 DRN 模型。

In [ ]

%cd /home/aistudio/PaddleGAN/!python tools/main.py --config-file configs/drn_psnr_x4_div2k.yaml --evaluate-only --load /home/aistudio/pretrained_model/drn_iter_50000_weight.pdparams

       

[04/28 00:25:05] ppgan.engine.trainer INFO: Test iter: [0/20][04/28 00:25:44] ppgan.engine.trainer INFO: Test iter: [10/20][04/28 00:26:16] ppgan.engine.trainer INFO: Metric psnr: 25.4040[04/28 00:26:16] ppgan.engine.trainer INFO: Metric ssim: 0.7598

       

ESRGAN、LESRCNN、DRN 图像超分效果对比

ESRGAN、LESRCNN、DRN 模型在迭代50000轮后,通过“训练时长”、“PSNR”、“SSIM”三个指标以及生成的图像清晰度来进行三者的数值与效果对比。

数值展示和模型下载

方法 数据集 迭代次数 训练时长 PSNR SSIM 模型下载

ESRGAN_PSNR卡通画超分数据集500005.7h25.40300.7585ESRGAN PSNRLESRCNN_PSNR卡通画超分数据集500002.3h24.93790.7457LESRCNN PSNRDRN_PSNR卡通画超分数据集500005.4h25.40400.7598DRN PSNR

超分效果展示

(Fork运行后可以看到超分效果的对比)

低分辨率 LQ ESRGAN_PSNR LESRCNN_PSNR DRN_PSNR 高分辨率 GT

@@##@@                    @@##@@                    @@##@@                    @@##@@                    @@##@@                    @@##@@                    @@##@@                    @@##@@                    @@##@@                    @@##@@                    @@##@@                    @@##@@                    @@##@@                    @@##@@                    @@##@@                    『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例 - 创想鸟

以上就是『行远见大』图像超分效果对比,以ESRGAN、LESRCNN、DRN模型为例的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/57879.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月10日 06:53:32
下一篇 2025年11月10日 06:54:11

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • HTML、CSS 和 JavaScript 中的简单侧边栏菜单

    构建一个简单的侧边栏菜单是一个很好的主意,它可以为您的网站添加有价值的功能和令人惊叹的外观。 侧边栏菜单对于客户找到不同项目的方式很有用,而不会让他们觉得自己有太多选择,从而创造了简单性和秩序。 今天,我将分享一个简单的 HTML、CSS 和 JavaScript 源代码来创建一个简单的侧边栏菜单。…

    2025年12月24日
    200

发表回复

登录后才能评论
关注微信