FRN——小样本学习SOTA模型

本文介绍CVPR2021论文提出的小样本学习模型FRN,其将分类问题归为特征重构问题,以闭合解形式从支持样本回归查询样本特征,性能与效率更优。文中展示了基于PaddlePaddle复现的FRN在mini-ImageNet上的精度,还介绍了数据集、环境依赖、快速开始步骤、代码结构及模型信息等内容。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

frn——小样本学习sota模型 - 创想鸟

FRN——小样本学习SOTA模型

一、论文概述

论文Few-Shot Classification with Feature Map Reconstruction Networks是顶会CVPR2021上发表的一种小样本学习经典方法。该方法在小样本学习的benchmark上依然具有最佳的性能指标,是该领域的重要方法。

FRN将小样本分类问题归结为潜在空间中的特征重构问题。作者认为,通过支持样本重构查询样本特征的能力,决定了查询样本的所属类别。作者在小样本学习中引入了一种新的机制,以闭合解的形式从支持样本特征直接向查询样本特征做回归,无需引入新的模块或者大规模的训练参数。上述方法得到的模型(FRN),相比先前的其他方法,无论在计算效率上还是性能表现上都更有优势。FRN在四个细粒度数据集上展现出实质性提升。在通用的粗粒度数据集mini-ImageNet和tiered-ImageNet上,也达到了SOTA指标。

下图展示了FRN的基本工作流程。

FRN——小样本学习SOTA模型 - 创想鸟        

二、复现精度

基于paddlepaddle深度学习框架,对文献算法进行复现后,本项目在mini-ImageNet上达到的测试精度,如下表所示。

task 本项目精度 参考文献精度

5-Way 1-Shot
66.45+-0.195-Way 5-Shot
82.83+-0.13

模型训练包括了两个过程,首先是模型预训练,按照典型分类网络的训练过程,将整个训练集送入backbone进行训练;然后是微调过程,按照episode training的训练范式,配置为20-Way 5-Shot方式进行微调训练。这两个训练过程的训练超参数设置如下:

(1)预训练过程

超参数名 设置值

lr0.1gamma0.1epoch350milestones200 300batch_size512

(2)微调训练过程

超参数名 设置值

lr1e-3gamma0.1epoch150train_n_episode1000milestones70 120train_n_way20n_shot5

三、数据集

miniImageNet数据集节选自ImageNet数据集。 DeepMind团队首次将miniImageNet数据集用于小样本学习研究,从此miniImageNet成为了元学习和小样本领域的基准数据集。 关于该数据集的介绍可以参考https://blog.csdn.net/wangkaidehao/article/details/105531837

miniImageNet是由Oriol Vinyals等在Matching Networks 中首次提出的,该文献是小样本分类任务的开山制作,也是本次复现论文关于该数据集的参考文献。在Matching Networks中, 作者提出对ImageNet中的类别和样本进行抽取(参见其Appendix B),形成了一个数据子集,将其命名为miniImageNet。 划分方法,作者仅给出了一个文本文件进行说明。 Vinyals在文中指明了miniImageNet图片尺寸为84×84。因此,后续小样本领域的研究者,均是基于原始图像,在代码中进行预处理, 将图像缩放到84×84的规格。

至于如何缩放到84×84,本领域研究者各有各的方法,通常与研究者的个人理解相关,但一般对实验结果影响不大。本次文献论文原文,未能给出 miniImageNet的具体实现方法,本项目即参考领域内较为通用的预处理方法进行处理。

数据集大小:miniImageNet包含100类共60000张彩色图片,其中每类有600个样本。 mini-imagenet一共有2.86GB数据格式:

|- miniImagenet|  |- images/|  |  |- n0153282900000005.jpg |  |  |- n0153282900000006.jpg|  |  |- …|  |- train.csv|  |- test.csv|  |- val.csv

       

数据集链接:miniImagenet

四、环境依赖

硬件:

x86 cpuNVIDIA GPU

框架:

PaddlePaddle = 2.4

其他依赖项:

numpy==1.19.3tqdm==4.59.0Pillow==8.3.1

五、快速开始

1、解压数据集和源代码:

!unzip -n -d ./data/ ./data/data105646/mini-imagenet-sxc.zip

In [ ]

%cd /home/aistudio/!unzip -n -d ./data/ ./data/data105646/mini-imagenet-sxc.zip

   In [ ]

%cd /home/aistudio/work/!unzip -o frn.zip

   In [ ]

# 生成json文件!cp write_miniImagenet_filelist.py /home/aistudio/data/mini-imagenet-sxc/%cd /home/aistudio/data/mini-imagenet-sxc/!python write_miniImagenet_filelist.py

   

2、执行以下命令启动预训练:

python pretrain.py --dataset mini_imagenet --data_path /home/aistudio/data/mini-imagenet-sxc --method stl_frn --lr 1e-1 --gamma 1e-1 --epoch 350 --milestones 200 300 --batch_size 512 --val_n_episode 600 --image_size 84 --model ResNet12 --n_shot 1 --n_query 15 --gpu

       

模型开始训练,运行完毕后,训练log和模型参数保存在./checkpoints/mini_imagenet/ResNet12_stl_frn_pretrain/目录下,分别是:

best_model.pdparams  # 最优模型参数文件output.log  # 训练LOG信息

       

训练完成后,可将上述文件手动保存到其他目录下,避免被后续训练操作覆盖。

In [ ]

%cd /home/aistudio/work!python pretrain.py --dataset mini_imagenet --data_path /home/aistudio/data/mini-imagenet-sxc --method stl_frn --lr 1e-1 --gamma 1e-1 --epoch 350 --milestones 200 300 --batch_size 512 --val_n_episode 600 --image_size 84 --model ResNet12 --n_shot 1 --n_query 15   --gpu

   

3、执行以下命令启动微调训练:

python meta_train.py --dataset mini_imagenet --data_path /home/aistudio/data/mini-imagenet-sxc --method meta_frn --lr 1e-3 --gamma 1e-1 --epoch 150 --train_n_episode 1000 --val_n_episode 600 --milestones 70 120 --image_size 84 --model ResNet12 --train_n_way 20 --val_n_way 5 --n_shot 5 --n_query 15 --gpu --pretrain_path ./checkpoints/mini_imagenet/ResNet12_stl_frn_pretrain/best_model.pdparams

       

模型开始训练,运行完毕后,训练log和模型参数保存在./checkpoints/mini_imagenet/ResNet12_meta_frn_20way_5shot_metatrain/目录下,分别是:

best_model.pdparams  # 最优模型参数文件output.log  # 训练LOG信息

       

训练完成后,可将上述文件手动保存到其他目录下,避免被后续训练操作覆盖。

In [ ]

%cd /home/aistudio/work!python meta_train.py --dataset mini_imagenet --data_path /home/aistudio/data/mini-imagenet-sxc --method meta_frn --lr 1e-3 --gamma 1e-1 --epoch 150 --train_n_episode 1000 --val_n_episode 600 --milestones 70 120 --image_size 84 --model ResNet12 --train_n_way 20 --val_n_way 5 --n_shot 5 --n_query 15 --gpu --pretrain_path ./checkpoints/mini_imagenet/ResNet12_stl_frn_pretrain/best_model.pdparams

   

4、执行以下命令进行评估

python test.py --dataset mini_imagenet --data_path /home/aistudio/data/mini-imagenet-sxc --model ResNet12 --method meta_frn --image_size 84 --gpu --n_shot 1 --model_path ./checkpoints/mini_imagenet/ResNet12_meta_frn_20way_5shot_metatrain/best_model.pdparams --test_task_nums 1 --test_n_episode 600

       

用于评估模型在小样本任务下的精度。

In [ ]

# 5-Way 1-Shot评估%cd /home/aistudio/work!python test.py --dataset mini_imagenet --data_path /home/aistudio/data/mini-imagenet-sxc --model ResNet12 --method meta_frn --image_size 84 --gpu --n_shot 1 --model_path ./checkpoints/mini_imagenet/ResNet12_meta_frn_20way_5shot_metatrain/best_model.pdparams --test_task_nums 1 --test_n_episode 600

   In [ ]

# 5-Way 5-Shot评估%cd /home/aistudio/work!python test.py --dataset mini_imagenet --data_path /home/aistudio/data/mini-imagenet-sxc --model ResNet12 --method meta_frn --image_size 84 --gpu --n_shot 5 --model_path ./checkpoints/mini_imagenet/ResNet12_meta_frn_20way_5shot_metatrain/best_model.pdparams --test_task_nums 1 --test_n_episode 600

   

六、代码结构与详细说明

6.1 代码结构

├── data                               # 数据处理相关│   ├── datamgr.py                       # data manager模块│   ├── dataset.py                       # data set模块├── methods                             # 模型相关│   ├── FRN.py                          # FRN核心算法├── network                             # backbone│   ├── conv.py                         # Conv-4和Conv-6代码实现│   ├── resnet.py                        # ResNet-12代码实现├── scripts                             # 运行工程脚本│   ├── mini_imagenet                     │   │   ├── run_frn                     │   │   │   ├── run_frn_metatrain.sh         # 运行微调训练│   │   │   ├── run_frn_pretrain.sh          # 运行预训练│   │   │   ├── run_frn_test.sh            # 运行测试├── meta_train.py                         # 微调训练代码├── pretrain.py                          # 预训练代码├── test.py                             # 测试代码├── utils.py                            # 公共调用函数├── wirite_miniImagenet_filelist.py             # 生成mini-ImageNet数据json文件

   

6.2 参数说明

可以在 pretrain.py 中设置训练与评估相关参数,具体如下:

参数 默认值 说明

—-batch_size128batch size–lr0.05初始学习率–wd5e-4weight decay超参–gamma0.1lr_scheduler衰减系数–milestones80, 120达到相应epoch后,lr_scheduler开始衰减–epoch150遍历数据集的迭代轮数–gpuTrue是否使用GPU进行训练–datasetmini_imagenet指定训练数据集–data_path”指定数据集的路径–modelResNet-12指定采用的backbone–valmeta指定验证方式–train_n_way20小样本训练类别数–val_n_episode600验证时测试多少个episode–val_n_way5小样本验证类别数–n_shot1给定支持样本的个数–n_query15指定查询样本的个数–num_classes64指定base set类别总数–save_freq50指定每隔多少个epoch保存一次模型参数–seed0指定随机数种子–resume”指定恢复训练时加载的中间参数文件路径

6.3 训练流程

可参考快速开始章节中的描述

训练输出

执行训练开始后,将得到类似如下的输出。每一轮epoch训练将会打印当前training loss、training acc、val loss、val acc以及训练kl散度。

Epoch 0 | Batch 0/150 | Loss 4.158544best model! save...val loss is 0.00, val acc is 37.46model best acc is 37.46, best acc epoch is 0This epoch use 7.61 minutestrain loss is 3.72, train acc is 10.84Epoch 1 | Batch 0/150 | Loss 3.052964val loss is 0.00, val acc is 37.46model best acc is 37.46, best acc epoch is 0This epoch use 3.73 minutestrain loss is 2.96, train acc is 25.28Epoch 2 | Batch 0/150 | Loss 2.588413val loss is 0.00, val acc is 37.46model best acc is 37.46, best acc epoch is 0This epoch use 3.71 minutestrain loss is 2.59, train acc is 33.27...

   

6.4 测试流程

可参考快速开始章节中的描述

此时的输出为:


   

八、模型信息

训练完成后,模型和相关LOG保存在./results/5w1s和./results/5w5s目录下。

训练和测试日志保存在results目录下。

信息 说明

发布者hrdwsong时间2023.03框架版本Paddle 2.4应用场景小样本学习支持硬件GPU、CPUAistudio地址https://aistudio.baidu.com/aistudio/projectdetail/5723600?contributionType=1&sUid=527829&shared=1&ts=1678943299939

以上就是FRN——小样本学习SOTA模型的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/60126.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月10日 17:56:49
下一篇 2025年11月10日 18:08:07

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    300

发表回复

登录后才能评论
关注微信