UniVision引入新一代统一框架:BEV检测与Occupancy双任务达到最先进水平!

写在前面&个人理解

近年来,自动驾驶技术中以视觉为中心的3D感知得到了迅猛发展。尽管3D感知模型在结构和概念上相似,但在特征表示、数据格式和目标方面仍存在差距,这对设计统一高效的3D感知框架提出了挑战。因此,研究人员需要努力解决这些差距,以实现更准确、可靠的自动驾驶系统。通过合作和创新,我们有望进一步提升自动驾驶的安全性和性能。

特别是在BEV下的检测任务和Occupancy任务方面,要想实现联合训练并取得良好效果是非常困难的。由于不稳定性和效果难以控制,这给许多应用带来了很大的困扰。然而,UniVision是一个简单高效的框架,它统一了以视觉为中心的3D感知的两个主要任务,即占用预测和目标检测。该框架的核心是一个显式-隐式视图变换模块,用于互补2D-3D特征转换。此外,UniVision还提出了一个局部全局特征提取和融合模块,用于高效和自适应的体素和BEV特征的提取、增强和交互。通过采用这些方法,UniVision能够在BEV下的检测任务和Occupancy任务中取得令人满意的结果。

UniVision提出了一种联合占用检测数据增强策略和渐进式loss weight调整策略,以提高多任务框架训练的效率和稳定性。在四个公共基准上进行了广泛的实验,包括无场景激光雷达分割、无场景检测、OpenOccupancy和Occ3D。实验结果显示,UniVision在每个基准上分别实现了+1.5 mIoU、+1.8 NDS、+1.5 mIoU和+1.8 mIoU的增益,达到了SOTA水平。因此,UniVision框架可以作为统一的以视觉为中心的3D感知任务的高性能基线。

当前3D感知领域的状态

3D感知是自动驾驶系统的首要任务,其目的是利用一系列传感器(如激光雷达、雷达和相机)获得的数据来全面了解驾驶场景,用于后续的规划和决策。过去,由于来自点云数据的精确3D信息,3D感知领域一直由基于激光雷达的模型主导。然而,基于激光雷达的系统成本高昂,容易受到恶劣天气的影响,而且部署起来不方便。相比之下,基于视觉的系统具有许多优点,如低成本、易于部署和良好的可扩展性。因此,以视觉为中心的三维感知引起了研究者的广泛关注。

最近,通过改进特征表示变换、时间融合和监督信号设计等方面,基于视觉的3D检测取得了显著进展,与基于激光雷达的模型的差距不断缩小。此外,基于视觉的占用任务近年来也得到了快速发展。与使用3D box来表示目标不同,占用率可以更全面地描述驾驶场景的几何和语义特征,且不受目标形状和类别的局限。

虽然检测方法和占用方法在结构和概念上有相似之处,但对于同时处理这两个任务并探索它们之间相互关系的研究还不充分。占用模型和检测模型通常提取不同的特征表示。占用预测任务需要进行详尽的语义和几何判断,因此广泛使用体素表示来保存细粒度的3D信息。然而,在检测任务中,BEV表示更为优选,因为大多数对象位于相同的水平水平面上,且有较小的重叠。

与BEV表示相比,体素表示在精细度方面更高,但效率较低。此外,许多高级算子主要针对2D特征进行设计和优化,使其与3D体素表示的集成不那么简单。BEV表示在时间效率和内存效率方面更具优势,但对于密集空间预测来说,它是次优的,因为在高度维度上丢失了结构信息。除了特征表示,不同的感知任务在数据格式和目标方面也有所不同。因此,确保训练多任务3D感知框架的统一性和效率是一项巨大的挑战。

UniVision网络结构

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

UniVision框架的总体架构如图1所示。该框架接收来自周围N个相机的多视角图像作为输入,并通过图像特征提取网络提取图像特征。接下来,利用Ex-Im视图变换模块将2D图像特征转化为3D体素特征。该模块融合了深度引导的显式特征提升和查询引导的隐式特征采样。经过视图变换后,体素特征被送入局部全局特征提取和融合块,以分别提取局部上下文感知的体素特征和全局上下文感知的BEV特征。接下来,通过交叉表示特征交互模块,对用于不同下游感知任务的体素特征和BEV特征进行信息交换。在训练过程中,UniVision框架采用联合Occ-Det数据增强和渐进loss weight调整策略进行有效训练。这些策略可以提高框架的训练效果和泛化能力。总之,UniVision框架通过多视角图像和3D体素特征的处理,以及特征交互模块的应用,实现了对周围环境的感知任务。同时,通过数据增强和loss weight调整策略的应用,有效提高了框架的训练效果。

1)Ex-Im View Transform

深度导向显式特征提升。这里遵循LSS方法:

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

2)查询引导的隐式特征采样。然而,在表示3D信息方面存在一些缺陷。的精度与估计的深度分布的精度高度相关。此外,LSS生成的点分布不均匀。点在相机附近密集,在距离上稀疏。因此,我们进一步使用查询引导的特征采样来补偿的上述缺点。

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

与从LSS生成的点相比,体素查询在3D空间中均匀分布,并且它们是从所有训练样本的统计特性中学习的,这与LSS中使用的深度先验信息无关。因此,和相互补充,将它们连接起来作为视图变换模块的输出特征:

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

2)局部全局特征提取与融合

给定输入体素特征,首先将特征叠加在Z轴上,并使用卷积层来减少通道,以获得BEV特征:

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

然后,模型分成两个平行的分支进行特征提取和增强。局部特征提取+全局特征提取,以及最后的交叉表示特征交互!如图1(b)中所示。

3)损失函数与检测头

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

渐进式loss weight调整策略。在实践中,发现直接结合上述损失往往会导致训练过程失败,网络无法收敛。在训练的早期阶段,体素特征Fvoxel是随机分布的,并且占用头和检测头中的监督比收敛中的其他损失贡献更小。同时,检测任务中的分类损失Lcls等损失项目非常大,并且在训练过程中占主导地位,使得模型难以优化。为了克服这一问题,提出了渐进式损失权重调整策略来动态调整损失权重。具体而言,将控制参数δ添加到非图像级损失(即占用损失和检测损失)中,以调整不同训练周期中的损失权重。控制权重δ在开始时被设置为较小的值Vmin,并在N个训练时期中逐渐增加到Vmax:

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

4)联合Occ-Det空间数据增强

在3D检测任务中,除了常见的图像级数据增强之外,空间级数据增强在提高模型性能方面也是有效的。然而,在占用任务中应用空间级别增强并不简单。当我们将数据扩充(如随机缩放和旋转)应用于离散占用标签时,很难确定生成的体素语义。因此,现有的方法只应用简单的空间扩充,如占用任务中的随机翻转。

为了解决这个问题,UniVision提出了一种联合Occ-Det空间数据增强,以允许在框架中同时增强3D检测任务和占用任务。由于3D box标签是连续值,并且可以直接计算增强的3D box进行训练,因此遵循BEVDet中的增强方法进行检测。尽管占用标签是离散的并且难以操作,但体素特征可以被视为连续的,并且可以通过采样和插值等操作来处理。因此建议对体素特征进行变换,而不是直接对占用标签进行操作以进行数据扩充。

具体来说,首先对空间数据增强进行采样,并计算相应的3D变换矩阵。对于占有标签及其voxel indices ,我们计算了它们的三维坐标。然后,将应用于,并对其进行归一化,以获得增强体素特征中的 voxel indices :

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

实验结果对比

使用了多个数据集进行验证,NuScenes LiDAR Segmentation、NuScenes 3D Object Detection、OpenOccupancy和Occ3D。

一键职达 一键职达

AI全自动批量代投简历软件,自动浏览招聘网站从海量职位中用AI匹配职位并完成投递的全自动操作,真正实现’一键职达’的便捷体验。

一键职达 79 查看详情 一键职达

NuScenes LiDAR Segmentation:根据最近的OccFormer和TPVFormer,使用相机图像作为激光雷达分割任务的输入,并且激光雷达数据仅用于提供用于查询输出特征的3D位置。使用mIoU作为评估度量。

NuScenes 3D Object Detection:对于检测任务,使用nuScenes的官方度量,即nuScene检测分数(NDS),它是平均mAP和几个度量的加权和,包括平均平移误差(ATE)、平均尺度误差(ASE)、平均方向误差(AOE)、平均速度误差(AVE)和平均属性误差(AAE)。

OpenOccupancy:OpenOccupancy基准基于nuScenes数据集,提供512×512×40分辨率的语义占用标签。标记的类与激光雷达分割任务中的类相同,使用mIoU作为评估度量!

Occ3D:Occ3D基准基于nuScenes数据集,提供200×200×16分辨率的语义占用标签。Occ3D进一步提供了用于训练和评估的可见mask。标记的类与激光雷达分割任务中的类相同,使用mIoU作为评估度量!

1)Nuscenes激光雷达分割

表1显示了nuScenes LiDAR分割基准的结果。UniVision显著超过了最先进的基于视觉的方法OccFormer 1.5% mIoU,并在排行榜上创下了基于视觉的模型的新纪录。值得注意的是,UniVision还优于一些基于激光雷达的模型,如PolarNe和DB-UNet。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

逆天了!univision:bev检测和occupancy联合统一框架,双任务sota!

2)NuScenes 3D目标检测任务

如表2所示,当使用相同的训练设置进行公平比较时,UniVision显示出优于其他方法。与512×1408图像分辨率的BEVDepth相比,UniVision在mAP和NDS方面分别获得2.4%和1.1%的增益。当放大模型并将UniVision与时间输入相结合时,它进一步以显著的优势优于基于SOTA的时序检测器。UniVision通过较小的输入分辨率实现了这一点,并且它不使用CBGS。

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

3)OpenOccupancy结果对比

OpenOccupancy基准测试的结果如表3所示。UniVision在mIoU方面分别显著超过了最近的基于视觉的占用方法,包括MonoScene、TPVFormer和C-CONet,分别为7.3%、6.5%和1.5%。此外,UniVision超越了一些基于激光雷达的方法,如LMSCNet和JS3C-Net。

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

4)Occ3D实验结果

表4列出了Occ3D基准测试的结果。在不同的输入图像分辨率下,UniVision在mIoU方面显著优于最近的基于视觉的方法,分别超过2.7%和1.8%。值得注意的是,BEVFormer和BEVDet-stereo加载预先训练的权重,并在推理中使用时间输入,而UniVision没有使用它们,但仍然实现了更好的性能。

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

5)组件在检测任务中的有效性

在表5中显示了检测任务的消融研究。当将基于BEV的全局特征提取分支插入基线模型时,性能提高了1.7%mAP和3.0%NDS。当将基于体素的占用任务作为辅助任务添加到检测器时,该模型的mAP增益提高了1.6%。当从体素特征中明确引入交叉表示交互时,该模型实现了最佳性能,与基线相比,mAP和NDS分别提高了3.5%和4.2%;

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

6)占用任务中组件的有效性

在表6中显示了占用任务的消融研究。基于体素的局部特征提取网络为基线模型带来了1.96%mIoU增益的改进。当检测任务被引入作为辅助监督信号时,模型性能提高了0.4%mIoU。

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

7)其它

表5和表6显示,在UniVision框架中,检测任务和占用任务都是相辅相成的。对于检测任务,占用监督可以提高mAP和mATE度量,这表明体素语义学习有效地提高了检测器对目标几何的感知,即中心度和尺度。对于占用任务,检测监督显著提高了前景类别(即检测类别)的性能,从而实现了整体改进。

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

在表7中展示了联合Occ-Det空间增强、Ex-Im视图转换模块和渐进loss weight调整策略的有效性。通过所提出的空间增强和所提出的视图变换模块,它在mIoU、mAP和NDS度量上显示了检测任务和占用任务的显著改进。loss weight调整策略能够有效地训练多任务框架。如果没有这一点,统一框架的训练就无法收敛,性能也很低。

逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!

原文链接:https://mp.weixin.qq.com/s/8jpS_I-wn1-svR3UlCF7KQ

以上就是UniVision引入新一代统一框架:BEV检测与Occupancy双任务达到最先进水平!的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/623618.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月11日 07:48:30
下一篇 2025年11月11日 07:50:01

相关推荐

  • 动态生成HTML表格:优化JavaScript数据展示与导出

    本文旨在解决JavaScript中动态生成HTML表格时遇到的代码冗余和样式控制难题。通过引入数据驱动的编程思想,我们将数据与视图逻辑分离,首先将表格内容组织为JavaScript对象数组,然后利用一个通用的函数将这些结构化数据渲染为可读性强、易于维护且支持灵活样式的HTML表格字符串。这种方法不仅…

    2025年12月23日
    000
  • HTML5性能优化怎么实现_HTML5新特性在性能优化方面的应用方法

    HTML5通过语义化标签、Web Storage、Canvas/SVG、Service Worker和原生媒体支持等技术提升性能:1. 语义化标签优化渲染效率;2. Web Storage减少网络请求;3. Canvas/SVG降低资源加载量;4. Service Worker实现离线缓存;5. 原…

    2025年12月23日
    000
  • 利用UTM参数与GTM优化链接点击来源追踪

    本文详细阐述了如何通过UTM参数精准追踪营销链接的点击来源,并深入探讨了Google Tag Manager (GTM) 在此过程中的高级应用。文章首先介绍了UTM参数的构成、生成方法及其在Google Analytics中的自动解析机制,强调其在识别流量来源方面的核心作用。随后,探讨了GTM如何通…

    2025年12月23日
    000
  • 如何通过HTML在线展示数据_HTML在线数据展示实现与可视化方案

    网页展示数据需结合HTML、CSS与JavaScript,首选table展示结构化数据,配合Chart.js等库实现可视化图表,通过fetch加载远程JSON动态渲染内容,并利用响应式设计与交互优化提升用户体验。 在网页中展示数据,核心是将结构化信息清晰、直观地呈现给用户。HTML本身是内容载体,结…

    2025年12月23日
    000
  • html在线几何图形绘制 html在线SVG应用实战教程

    使用HTML与SVG结合可高效绘制几何图形。SVG基于XML,支持圆形、矩形、多边形、路径等,在任意分辨率下清晰。1. 基础元素包括rect、circle、ellipse、line、polygon、polyline和path。2. 实战示例:用polygon绘制三角形,path绘制五角星和弧线仪表盘…

    2025年12月23日
    000
  • 单页应用(SPA)中特定分类数据的API直链访问与性能考量

    针对单页应用(SPA),本文探讨了如何通过URL直接访问特定分类数据,而非依赖客户端UI交互。文章揭示了SPA在初始加载时已获取所有数据,因此客户端分类选择对数据加载量无影响。核心策略是绕过前端界面,直接调用后端API获取所需数据,从而实现高效且精准的数据访问,并提供了具体API示例。 理解单页应用…

    2025年12月23日
    100
  • jQuery循环中动态表格数据访问与比较教程

    本文详细介绍了在jQuery循环中处理动态生成表格数据时常见的挑战与解决方案。我们将探讨如何正确使用.find()代替.children()来定位嵌套元素,解决.data()方法返回数字类型导致比较错误的问题,并提供一个基于事件监听的实用示例,以实现对用户修改数据的实时检测和保存。 动态表格数据处理…

    2025年12月22日
    000
  • 揭秘canvas技术在数据可视化中的独特威力

    发现Canvas技术在数据可视化中的独特作用 随着数据时代的到来,数据可视化成为了一种重要的方式来呈现大量的数据。在数据可视化中,Canvas技术以其独特的优势在各个领域展示了巨大的潜力。本文将着重介绍Canvas技术在数据可视化中的独特作用,并给出具体的代码示例。 Canvas是HTML5中的一个…

    好文分享 2025年12月21日
    000
  • 使用localstorage存储数据所需的包有哪些?

    localstorage是HTML5中的一项重要技术,它可以用来在客户端本地存储数据。在使用localstorage存储数据之前,我们需要确保在代码中引入合适的包来操作这个功能。 在使用localstorage之前,我们需要在HTML文件中添加以下代码来引入localstorage的相关包: 在以上…

    2025年12月21日
    000
  • 无法将数据保存到localstorage,为什么?

    为什么我的数据无法保存到localstorage中? 本文将详细讨论为何在某些情况下,数据无法保存到本地存储(localstorage)中。同时,我将提供一些具体的代码示例以帮助您解决这个问题。 首先,让我们来了解一下什么是localstorage。localstorage是HTML5中引入的一种W…

    2025年12月21日
    000
  • 如何将HTML表单数据作为文本并发送到html2pdf?

    html2pdf 是一个 JavaScript 包,允许开发人员将 html 转换为 canvas、pdf、图像等。它将 html 作为参数并将其添加到 pdf 或所需文档中。此外,它还允许用户在添加 html 内容后下载该文档。 在这里,我们将访问表单并使用html2pdf npm包将其添加到pd…

    2025年12月21日
    000
  • HTML中如何用post提交数据

    http/1.1 协议规定的 http 请求方法有 options、get、head、post、put、delete、trace、connect 这几种。其中 post 一般用来向服务端提交数据,本文主要讨论 post 提交数据的几种方式 http/1.1 协议规定的 http 请求方法有 opti…

    好文分享 2025年12月21日
    000
  • html的盒模型详解

    这次给大家带来html的盒模型详解,使用html盒模型的注意事项有哪些,下面就是实战案例,一起来看一下。 1.1. 盒的内容区的尺寸— content width和content height —取决于几个因素: –生成该盒的元素是否设置了’width’或&#82…

    好文分享 2025年12月21日
    000
  • 服务端主动发送数据回客户端在H5里的实现步奏

    我们知道,在server sent event里,通过eventsource对象接收服务器发送事件的通知是有三个事件的,message, open, error这三种,今天就给大家演示一下服务端主动发送数据回客户端在h5里的实现步奏。 Server Sent Event Server Sent Ev…

    好文分享 2025年12月21日
    000
  • 可视化图表制作_javascript数据展示

    答案是使用JavaScript库如Chart.js、D3.js和ECharts可实现交互式数据可视化;其中Chart.js适合快速集成常见图表,D3.js适用于高度自定义的复杂图形,ECharts支持高级图表且中文文档完善;以Chart.js创建柱状图需引入库、添加canvas容器并初始化Chart…

    2025年12月21日
    000
  • Odoo 14 POS:深入理解订单与现金支付明细并高效调试

    本教程旨在指导odoo 14 pos开发者如何准确读取销售会话中的订单及其现金支付明细,并计算总现金支付金额。文章将详细介绍odoo前端数据模型的访问方法,并着重强调利用浏览器开发者工具和`debugger`关键字进行运行时对象结构检查与调试的最佳实践,帮助开发者高效解决数据访问中的常见问题。 Od…

    2025年12月21日
    000
  • Odoo 14 POS会话中现金支付金额的准确获取与调试指南

    针对odoo 14 pos会话中读取订单并计算现金支付总额的需求,本文将详细指导如何正确访问支付明细对象属性。重点介绍利用浏览器开发者工具设置断点进行实时调试的方法,帮助开发者深入理解数据结构,从而高效准确地实现功能,避免因属性名称不匹配而导致的常见问题。 1. 理解Odoo POS数据模型 在Od…

    2025年12月21日
    000
  • javascript_如何实现数据可视化

    JavaScript实现数据可视化需将数据转为图形,常用Chart.js、D3.js等库快速构建图表,或用Canvas/SVG原生绘图;通过fetch获取数据并动态更新视图,如Chart.js调用update()刷新,最终实现交互式可视化。 JavaScript 实现数据可视化,核心是将数据转换成图…

    2025年12月21日
    000
  • Ionic 应用在浏览器刷新时状态持久化策略

    当 ionic 应用在浏览器中被刷新时,浏览器会执行完整的页面重载,导致应用状态和数据丢失。本文旨在阐明为何无法阻止浏览器进行全面重载,并提供一个专业的解决方案:利用 capacitor preferences 等客户端存储机制来持久化关键应用状态和数据,确保在浏览器刷新后也能恢复应用到预期状态,从…

    2025年12月21日
    100
  • Node.js中高效移除文本文件中的制表符( )

    本文详细探讨了在node.js环境中从文本文件移除制表符(“)的有效方法。文章首先解释了为何常见的字符串替换尝试可能失败,强调了“和`t`在正则表达式中的区别。随后,提供了两种实用解决方案:直接使用正确正则表达式进行替换,以及通过按行处理数据实现更精细的控制。文章还包含了示例…

    2025年12月21日
    000

发表回复

登录后才能评论
关注微信