小红书搜索团队揭示:验证负样本在大规模模型蒸馏中的重要性

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值

大语言模型(llms)在推理任务上表现出色,但其黑盒属性和庞大参数量限制了其在实践中的应用。特别是在处理复杂的数学问题时,llms有时会出现错误的推理链。传统的研究方法仅从正样本中迁移知识,忽略了合成数据中带有错误答案的重要信息。因此,为了提高llms的性能和可靠性,我们需要更加全面地考虑和利用合成数据,不仅仅局限于正样本,以帮助llms更好地理解和推理复杂问题。这将有助于解决llms在实践中的挑战,推动其广泛应用。

在 AAAI 2024 上,小红书搜索算法团队提出了一个创新框架,在蒸馏大模型推理能力的过程中充分利用负样本知识。负样本,即那些在推理过程中未能得出正确答案的数据,虽常被视为无用,实则蕴含着宝贵的信息。

论文提出并验证了负样本在大模型蒸馏过程中的价值,构建一个模型专业化框架:除了使用正样本外,还充分利用负样本来提炼 LLM 的知识。该框架包括三个序列化步骤,包括负向协助训练(NAT)负向校准增强(NCE)动态自洽性(ASC),涵盖从训练到推理的全阶段过程。通过一系列广泛的实验,我们展示了负向数据在 LLM 知识蒸馏中的关键作用。

一、背景

在当前情况下,思维链(CoT)的引导下,大型语言模型(LLMs)展现出了强大的推理能力。然而,我们已经证明,这种涌现能力只有具备千亿级参数的模型才能够实现。由于这些模型需要巨大的计算资源和高昂的推理成本,它们在资源受限的情况下很难应用。因此,我们的研究目标是开发出能够进行复杂算术推理的小型模型,以便在实际应用中进行大规模部署。

知识蒸馏提供了一种有效的方法,可以将 LLMs 的特定能力迁移到更小的模型中。这个过程也被称为模型专业化(model specialization),它强制小模型专注于某些能力。先前的研究利用 LLMs 的上下文学习(ICL)来生成数学问题的推理路径,并将其作为训练数据,有助于小模型获得复杂推理能力。然而,这些研究只使用了生成的具有正确答案的推理路径(即正样本)作为训练样本,忽略了在错误答案(即负样本)的推理步骤中有价值的知识。因此,研究者们开始探索如何利用负样本中的推理步骤,以提高小模型的性能。一种方法是使用对抗训练,即引入一个生成器模型来生成错误答案的推理路径,然后将这些路径与正样本一起用于训练小模型。这样,小模型可以学习到在错误推理步骤中的有价值的知识,并提高其推理能力。另一种方法是利用自监督学习,通过将正确答案与错误答案进行对比,让小模型学习区分它们,并从中提取有用的信息。这些方法都可以为小模型提供更全面的训练,使其具备更强大的推理能力。总之,利用负样本中的推理步骤可以帮助小模型获得更全面的训练,提高其推理能力。这种

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

如图所示,表 1 展示了一个有趣的现象:分别在正、负样本数据上训练的模型,在 MATH 测试集上的准确答案重叠非常小。尽管负样本训练的模型准确性较低,但它能够解决一些正样本模型无法正确回答的问题,这证实了负样本中包含着宝贵的知识。此外,负样本中的错误链路能够帮助模型避免犯类似错误。另一个我们应该利用负样本的原因是 OpenAI 基于 token 的定价策略。即使是 GPT-4,在 MATH 数据集上的准确性也低于 50%,这意味着如果仅利用正样本知识,大量的 token 会被浪费。因此,我们提出:相比于直接丢弃负样本,更好的方式是从中提取和利用有价值的知识,以增强小模型的专业化。

模型专业化过程一般可以概括为三个步骤:

1)思维链蒸馏(Chain-of-Thought Distillation),使用 LLMs 生成的推理链训练小模型。

2)自我增强(Self-Enhancement),进行自蒸馏或数据自扩充,以进一步优化模型。

3)自洽性(Self-Consistency)被广泛用作一种有效的解码策略,以提高推理任务中的模型性能。

在这项工作中,我们提出了一种新的模型专业化框架,该框架可以全方位利用负样本,促进从 LLMs 提取复杂推理能力。

我们首先设计了负向协助训练(NAT)方法,其中 dual-LoRA 结构被设计用于从正向、负向两方面获取知识。作为一个辅助模块,负向 LoRA 的知识可以通过校正注意力机制,动态地整合到正向 LoRA 的训练过程中。对于自我增强,我们设计了负向校准增强(NCE),它将负向输出作为基线,以加强关键正向推理链路的蒸馏。除了训练阶段,我们还在推理过程中利用负向信息。传统的自洽性方法将相等或基于概率的权重分配给所有候选输出,导致投票出一些不可靠的答案。为了缓解该问题,提出了动态自洽性(ASC)方法,在投票前进行排序,其中排序模型在正负样本上进行训练的。

二、方法

我们提出的框架以 LLaMA 为基础模型,主要包含三个部分,如图所示:

步骤 1 :对负向 LoRA 进行训练,通过合并单元帮助学习正样本的推理知识;
步骤 2 :利用负向 LoRA 作为基线来校准自我增强的过程;
步骤 3 :在正样本和负样本上训练排名模型,在推理过程中根据其得分,自适应地对候选推理链路进行加权。

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

2.1 负向协助训练(NAT)

我们提出了一个两阶段的负向协助训练(NAT)范式,分为负向知识吸收动态集成单元两部分:

2.1.1 负向知识吸收

通过在负数据 

 上最大化以下期望,负样本的知识被 LoRA  θ

 吸收。在这个过程中,LLaMA 的参数保持冻结。

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

2.1.2 动态集成单元

由于无法预先确定 θ

 擅长哪些数学问题,我们设计了如下图所示的动态集成单元,以便在  学习正样本知识的过程中,动态集成来自 θ

 的知识:

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

我们冻结 θ

 以防止内部知识被遗忘,并额外引入正 LoRA 模块 θ 。理想情况下,我们应该正向集成正负 LoRA 模块(在每个 LLaMA 层中输出表示为  与  ),以补充正样本中所缺乏但对应  所具有的有益知识。当  θ

 包含有害知识时,我们应该对正负 LoRA 模块进行负向集成,以帮助减少正样本中可能的不良行为。

我们提出了一种纠正注意力机制来实现这一目标,如下所示:

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

我们使用 

 作为查询来计算  和  的注意力权重。通过在添加校正项 [0.5;-0.5], 的注意力权重被限制在 [-0.5,0.5] 的范围内,从而实现了在正、负两个方向上自适应地集成来自  的知识的效果。最终,

 和 LLaMA 层输出的总和形成了动态集成单元的输出。

可图大模型 可图大模型

可图大模型(Kolors)是快手大模型团队自研打造的文生图AI大模型

可图大模型 32 查看详情 可图大模型

2.2  负向校准增强(NCE)

为了进一步增强模型的推理能力,我们提出了负校准增强(NCE),它使用负知识来帮助自我增强过程。我们首先使用 NAT 为中的每个问题生成对作为扩充样本,并将它们补充到训练数据集中。对于自蒸馏部分,我们注意到一些样本可能包含更关键的推理步骤,对提升模型的推理能力至关重要。我们的主要目标是确定这些关键的推理步骤,并在自蒸馏过程中加强对它们的学习。

考虑到 NAT 已经包含了 θ

 的有用知识,使得 NAT 比 θ

 推理能力更强的因素,隐含在两者之间不一致的推理链路中。因此,我们使用 KL 散度来测量这种不一致性,并最大化该公式的期望:

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

β 值越大,表示两者之间的差异越大,意味着该样本包含更多关键知识。通过引入 β 来调整不同样本的损失权重,NCE 将能够选择性地学习并增强 NAT 中嵌入的知识。

2.3 动态自洽性(ASC)

自洽性(SC)对于进一步提高模型在复杂推理中的表现是有效的。然而,当前的方法要么为每个候选者分配相等的权重,要么简单地基于生成概率分配权重。这些策略无法在投票阶段根据 (rˆ, yˆ) 的质量调整候选权重,这可能会使正确候选项不易被选出。为此,我们提出了动态自洽性方法(ASC),它利用正负数据来训练排序模型,可以自适应地重新配权候选推理链路。

2.3.1 排序模型训练

理想情况下,我们希望排序模型为得出正确答案的推理链路分配更高的权重,反之亦然。因此,我们用以下方式构造训练样本:

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

并使用 MSE loss 去训练排序模型:

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

2.3.2 加权策略

我们将投票策略修改为以下公式,以实现自适应地重新加权候选推理链路的目标:

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

下图展示了 ASC 策略的流程:

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

从知识迁移的角度来看,ASC 实现了对来自 LLMs 的知识(正向和负向)的进一步利用,以帮助小模型获得更好的性能。

三、实验

本研究专注于具有挑战性的数学推理数据集 MATH,该数据集共有 12500 个问题,涉及七个不同的科目。此外,我们还引入了以下四个数据集来评估所提出的框架对分布外(OOD)数据的泛化能力:GSM8K、ASDiv、MultiArith和SVAMP。

对于教师模型,我们使用 Open AI 的 gpt-3.5-turbo 和 gpt-4 API来生成推理链。对于学生模型,我们选择 LLaMA-7b。

在我们的研究中有两种主要类型的基线:一种为大语言模型(LLMs),另一种则基于 LLaMA-7b。对于 LLMs,我们将其与两种流行的模型进行比较:GPT3 和 PaLM。对于 LLaMA-7b,我们首先提供我们的方法与三种设置进行比较:Few-shot、Fine-tune(在原始训练样本上)、CoT KD(思维链蒸馏)。在从负向角度学习方面,还将包括四种基线方法:MIX(直接用正向和负向数据的混合物训练 LLaMA)、CL(对比学习)、NT(负训练)和 UL(非似然损失)。

3.1 NAT 实验结果

所有的方法都使用了贪婪搜索(即温度 = 0),NAT 的实验结果如图所示,表明所提出的 NAT 方法在所有基线上都提高了任务准确性。

从 GPT3 和 PaLM 的低值可以看出,MATH 是一个非常困难的数学数据集,但 NAT 仍然能够在参数极少的情况下表现突出。与在原始数据上进行微调相比,NAT 在两种不同的 CoT 来源下实现了约 75.75% 的提升。与 CoT KD 在正样本上的比较,NAT 也显著提高了准确性,展示了负样本的价值。

对于利用负向信息基线,MIX 的低性能表明直接训练负样本会使模型效果很差。其他方法也大多不如 NAT,这表明在复杂推理任务中仅在负方向上使用负样本是不够的。

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

3.2 NCE 实验结果

如图所示,与知识蒸馏(KD)相比,NCE 实现了平均 10%(0.66) 的进步,这证明了利用负样本提供的校准信息进行蒸馏的有效性。与 NAT 相比,尽管 NCE 减少了一些参数,但它依然有 6.5% 的进步,实现压缩模型并提高性能的目的。

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

3.3 ASC 实验结果

为了评估 ASC,我们将其与基础 SC 和 加权(WS)SC 进行比较,使用采样温度 T = 1 生成了 16 个样本。如图所示,结果表明,ASC 从不同样本聚合答案,是一种更有前景的策略。

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

3.4 泛化性实验结果

除了 MATH 数据集,我们评估了框架在其他数学推理任务上的泛化能力,实验结果如下。

小红书搜索团队提出全新框架:验证负样本对大模型蒸馏的价值图片

四、结语

本项工作探讨了利用负样本从大语言模型中提炼复杂推理能力,迁移到专业化小模型的有效性。小红书搜索算法团队提出了一个全新的框架,由三个序列化步骤组成,并在模型专业化的整个过程中充分利用负向信息。负向协助训练(NAT)可以从两个角度提供更全面地利用负向信息的方法。负向校准增强(NCE)能够校准自蒸馏过程,使其更有针对性地掌握关键知识。基于两种观点训练的排序模型可以为答案聚合分配更适当的权重,以实现动态自洽性(ASC)。大量实验表明,我们的框架可以通过生成的负样本来提高提炼推理能力的有效性。

论文地址:https://www.php.cn/link/8fa2a95ee83cd1633cfd64f78e856bd3

五、作者简介

李易为:
现博士就读于北京理工大学,小红书社区搜索实习生,在 AAAI、ACL、EMNLP、NAACL、NeurIPS、KBS 等机器学习、自然语言处理领域顶级会议/期刊上发表数篇论文,主要研究方向为大语言模型蒸馏与推理、开放域对话生成等。
袁沛文:
现博士就读于北京理工大学,小红书社区搜索实习生,在 NeurIPS、AAAI 等发表多篇一作论文,曾获 DSTC11 Track 4 第二名。主要研究方向为大语言模型推理与评测。冯少雄:
负责小红书社区搜索向量召回。在 AAAI、EMNLP、ACL、NAACL、KBS 等机器学习、自然语言处理领域顶级会议/期刊上发表数篇论文。

道玄(潘博远):
小红书交易搜索负责人。在NeurIPS、ICML、ACL 等机器学习和自然语言处理领域顶级会议上发表数篇一作论文,在斯坦福机器阅读竞赛 SQuAD 排行榜上获得第二名,在斯坦福自然语言推理排行榜上获得第一名。

曾书(曾书书):
小红书社区搜索语义理解与召回方向负责人。硕士毕业于清华大学电子系,在互联网领域先后从事自然语言处理、推荐、搜索等相关方向的算法工作。

以上就是小红书搜索团队揭示:验证负样本在大规模模型蒸馏中的重要性的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/625715.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月11日 08:41:32
下一篇 2025年11月11日 08:42:52

相关推荐

  • HiDream-I1— 智象未来开源的文生图模型

    hidream-i1:一款强大的开源图像生成模型 HiDream-I1是由HiDream.ai团队开发的17亿参数开源图像生成模型,采用MIT许可证,在图像质量和对提示词的理解方面表现卓越。它支持多种风格,包括写实、卡通和艺术风格,广泛应用于艺术创作、商业设计、科研教育以及娱乐媒体等领域。 HiDr…

    2025年12月5日
    000
  • RL 是推理神器?清华上交大最新研究指出:RL 让大模型更会“套公式”、却不会真推理

    清华和上交的最新论文中,上演了一场“学术打假”的戏码。文中研究者们对当前“纯 rl 有利于提升模型推理能力”的主流观点提出了相反的意见。 通过一系列实验,他们证明引入强化学习的模型在某些任务中的表现,竟然不如未使用强化学习的模型。 论文批判性地探讨了 RLVR 在提升 LLM 推理能力方面的作用,尤…

    2025年12月3日 科技
    100
  • Writesonic怎样用生成续写扩篇幅_Writesonic用生成续写扩篇幅【篇幅扩展】

    使用Writesonic可有效扩写文章:一、用“Continue Writing”功能生成连贯续写;二、通过“Explain this in detail with examples”指令深化内容;三、以“Provide a counter-argument”引入多视角论述;四、利用FAQ生成器创建…

    2025年12月2日 科技
    000
  • 亚马逊发布 Bedrock,推出多项新功能,助力企业利用生成式AI技术

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 亚马逊网络服务公司近日在生态系统中推出了五款全新的生成式人工智能产品,这些产品将帮助企业客户利用自己的数据建立人工智能应用程序,并提供更好的安全性和模型的可及性。 这些新服务的包括全面推出的Am…

    2025年12月2日
    000
  • ICCV 2023揭晓:ControlNet、SAM等热门论文斩获奖项

    在法国巴黎举行了国际计算机视觉大会ICCV(International Conference on Computer Vision)本周开幕 作为全球计算机视觉领域顶级的学术会议,ICCV 每两年召开一次。 ICCV的热度一直以来都与CVPR不相上下,屡创新高 在今天的开幕式上,ICCV官方公布了今…

    2025年12月2日 科技
    000
  • 最多400万token上下文、推理提速22倍,StreamingLLM火了,已获GitHub 2.5K星

    如果你曾经与任何一款对话式 AI 机器人交流过,你一定会记得一些令人感到非常沮丧的时刻。比如,你在前一天的对话中提到的重要事项,被 AI 完全忘记了…… 这是因为当前的多数 LLM 只能记住有限的上下文,就像为考试而临时抱佛脚的学生,稍加盘问就会「露出马脚」。 如果AI助手能够在聊天中根据上下文参考…

    2025年12月2日 科技
    000
  • PyTorch+昇腾 共促AI生态创新发展

    2023年10月5日(北京时间),pyt%ignore_a_1%rch社区正式发布了2.1版本。经过pytorch社区与昇腾的持续合作和共同努力,pytorch 2.1版本已经同步支持昇腾npu。这意味着开发者可以直接在pytorch 2.1上进行基于昇腾的模型开发。未来,通过持续的社区技术贡献,昇…

    2025年12月2日 科技
    000
  • 生产式AI驱动的主机自动化测试

    译者 | 陈峻 审校 | 重楼 将传统大型主机应用的代码和数据迁移到现代化技术架构上,被认为是企业数字化发展的关键步骤。在追求效率和可扩展性的过程中,这种转变通常涉及从传统大型主机环境迁移到更灵活的云计算或内部部署方案中。这样的转型有助于企业实现更高的灵活性和创新能力,同时降低成本和提高安全性。这种…

    2025年12月2日 科技
    000
  • 「人车交互」新突破!普渡大学发布Talk2Drive框架:可学习/定制的「指令识别」系统

    在普渡大学数字孪生实验室的最新研究中,科学家们采用了一项革命性技术——利用大型语言模型(llm)来增强自动驾驶汽车的智能指令解析能力。这一创新为自动驾驶技术的发展带来了新的可能性,有望提高车辆对驾驶指令的理解和响应速度。 这项技术的关键是Talk2Drive框架,旨在利用人类自然语言来操控自动驾驶汽…

    2025年12月2日 科技
    000
  • 选择最适合数据的嵌入模型:OpenAI 和开源多语言嵌入的对比测试

    openai最近宣布推出他们的最新一代嵌入模型embedding v3,他们声称这是性能最出色的嵌入模型,具备更高的多语言性能。这一批模型被划分为两种类型:规模较小的text-embeddings-3-small和更为强大、体积较大的text-embeddings-3-large。 ☞☞☞AI 智能…

    2025年12月2日 科技
    000
  • 变革性趋势:生成式人工智能及其对软件开发的影响

    人工智能的崛起正在推动软件开发的快速发展。这一强大技术有可能彻底改变我们构建软件的方法,对设计、开发、测试和部署等各个方面都会产生深远影响。 对于企图进入动态软件开发领域的企业来说,生成式人工智能技术的问世为它们提供了前所未有的发展机遇。将这一前沿技术纳入其开发流程后,公司可以大幅提升生产效率、缩短…

    2025年12月2日 科技
    000
  • 谷歌10M上下文窗口正在杀死RAG?被Sora夺走风头的Gemini被低估了?

    要说最近最郁闷的公司,谷歌肯定算得上一个:自家的 Gemini 1.5 刚刚发布,就被 OpenAI 的 Sora 抢尽了风头,堪称 AI 界的「汪峰」。 具体来说,谷歌这次推出的是用于早期测试的 Gemini 1.5 的第一个版本 ——Gemini 1.5 Pro。它是一种中型多模态模型(涉及文本…

    2025年12月2日 科技
    000
  • Sora无法替代人类!亚马逊工程师断言:实际工作冲突不可能靠AI解决

    这一周,OpenAI视频AI工具Sora一出现,可谓是炸翻了天。 「饭碗保不住了」的恐惧,真实地击中了许多人。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 图片 不过,亚马逊的一位工程师Cameron Gould则认为,其实并不必对AI如…

    2025年12月2日 科技
    000
  • 马斯克预测 Grok 5 实现通用人工智能概率 10%且还在上升

    近日,特斯拉与 spacex 首席执行官马斯克在社交平台上发表言论,预测其旗下人工智能公司 xai 正在研发的 grok 5 大型语言模型,有 10% 的可能性实现通用人工智能(agi),并指出这一概率正持续攀升。 上个月,马斯克就曾提出 xAI 或将通过 Grok 5 达成 AGI 的目标,此番言…

    2025年12月2日 科技
    000
  • 如何快速部署DeepSeek| 腾讯云TI部署指南

    一、为什么选择deepseek与创想鸟hai的结合 近年来,随着大模型在多种应用场景中的快速发展,AI工程师们迫切需要一种能够快速、高效且成本低廉的方式来部署和管理模型服务。PHP中文网HAI(高性能AI)平台是一个专为高性能计算和深度学习设计的综合解决方案,提供GPU/CPU资源调度、自动化部署以…

    2025年12月2日 科技
    000
  • 腾讯云TI平台极速部署DeepSeek

    前言 DeepSeek的出现,彻底改变了传统的LLM模式,允许我们在本地电脑上部署类似于ChatGPT的大型语言模型,解决了网络和对话次数限制的问题。然而,如果希望随时随地使用DeepSeek云服务,可以考虑利用PHP中文网的HAI或TI平台。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, …

    2025年12月2日 科技
    000
  • deepseek官网入口教程_deepseek网页版使用详解

    答案是使用DeepSeek网页版需先访问官网https://chat.deepseek.com,点击【开始对话】登录或注册账号,支持手机号验证码登录和微信扫码;登录后可在主界面输入问题进行对话,使用“深度思考”提升推理能力,“联网搜索”获取实时信息,或通过别针图标上传文档(PDF/Word)提取内容…

    2025年12月2日 科技
    000
  • llama3如何接入实时流数据_llama3实时流数据接入配置与事件驱动机制

    首先配置消息中间件实现异步通信,选择Kafka或RabbitMQ部署并确保SSL加密;其次构建事件监听器,编写消费者脚本订阅主题、解析数据并调用llama3;接着启用流式输出模式,通过–streaming-enable参数和SSE客户端实现低延迟响应;然后集成时间窗口聚合模块,每5秒拼接…

    2025年12月2日 科技
    000
  • llama3如何执行A/B实验_llama3A/B实验执行框架及变异生成分析

    答案:通过构建可控实验框架,对比不同提示策略与解码参数对Llama3生成效果的影响,评估其在一致性、多样性与准确性上的表现差异。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 如果您希望在Llama3模型的输出生成过程中进行A/B实验以评估…

    2025年12月2日 科技
    000
  • llama3如何创建动态可视化_llama3动态可视化创建引擎及交互元素绑定

    首先检查可视化引擎是否正确初始化,需导入VisualizerEngine并以dynamic模式启动渲染循环;接着绑定数据源到图形元素,通过bind_data连接数据流与图表,并设置更新间隔;然后配置交互控件如滑块,将其事件绑定至回调函数以实现参数动态调整;最后在多图层场景中添加图层并建立依赖关系,启…

    2025年12月2日 科技
    000

发表回复

登录后才能评论
关注微信