时序分析中的常用算法,都在这里了

时间序列分析是利用事件在过去一段时间内的特征来预测未来一段时间内该事件的特征。这是一种相对较为复杂的预测建模问题,与回归分析模型的预测有所不同。时间序列模型依赖于事件发生的先后顺序,同样大小的值改变顺序后输入模型会产生不同的结果

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

时序分析中的常用算法,都在这里了

时序问题都看成是回归问题,只是回归的方式(线性回归、树模型、深度学习等)有一定的区别。

时序分析包括静态时序分析(STA)和动态时序分析。

以下为几种常见的时序分析算法

1 深度学习时序分析

RNN(循环神经网络)

循环神经网络是指一个随着时间的推移,重复发生的结构。在自然语言处理(NLP),语音图像等多个领域均有非常广泛的应用。RNN网络和其他网络最大的不同就在于RNN能够实现某种“记忆功能”,是进行时间序列分析时最好的选择。如同人类能够凭借自己过往的记忆更好地认识这个世界一样。RNN也实现了类似于人脑的这一机制,对所处理过的信息留存有一定的记忆,而不像其他类型的神经网络并不能对处理过的信息留存记忆。

长处:

这种方法可以记忆时间,适用于解决时间序列中间间隔较短的问题

缺点:

长时间步数据容易出现梯度消失和梯度爆炸的问题

LSTM(长短时记忆网络)

LSTM(长短时记忆网络,Long Short-Term Memory)是一种时间循环神经网络,旨在解决常规循环神经网络(RNN)中存在的长期依赖问题而设计的。所有RNN都由一系列重复的神经网络模块构成

长处:

适合于处理和预测时间序列中间隔和延迟非常长的重要事件。

缺点:

模型参数过多会导致过拟合问题的出现

2 传统的时序分析模型

自回归(Auto Regression, AR)移动平均线(Moving Average, MA)自回归移动平均线(Autoregressive Moving Average, ARMA)自回归综合移动平均线(Autoregressive Integrated Moving Average, ARIMA)季节性自回归整合移动平均线(Seasonal Autoregressive Integrated Moving Average, SARIMA)具有外生回归量的季节性自回归整合移动平均线(Seasonal Autoregressive Integrated Moving-Average with Exogenous Regressors, SARIMAX)

自回归模型 AR

自回归模型(Autoregressive Model,简称 AR 模型)是一种时间序列分析方法,用于描述一个时间序列变量与其过去值之间的关系。AR模型假设当前观测值与过去的观测值之间存在线性关系,通过使用过去的观测值来预测未来的观测值。

长处:

简单性:AR模型是一种线性模型,易于理解和实现。它仅使用过去的观测值作为自变量,没有其他复杂的因素需要考虑。建模能力:AR模型可以捕捉时间序列数据的自相关结构,即当前观测值与过去观测值之间的关系。它能够提供对未来观测值的预测,并揭示数据中的趋势和模式。

缺点:

只适用于平稳序列:AR模型要求时间序列是平稳的,即均值、方差和自相关不随时间变化。如果序列不平稳,可能需要进行差分操作或使用其他模型来处理非平稳性。对过去观测值敏感:AR模型的预测结果受到过去观测值的影响,因此在处理长期预测时可能会出现误差累积的问题。较大的阶数可能会导致模型过拟合,而较小的阶数可能无法捕捉到时间序列的复杂动态。无法处理季节性数据:AR模型无法直接处理具有明显季节性的时间序列。对于具有季节性模式的数据,可以使用季节性AR模型(SAR)或ARIMA模型进行建模。

移动平均法(MA)

移动平均法(MA):这种方法是基于数据的平均值,并假设未来的值与过去的值之间具有一定的稳定性

长处:

能够捕捉到时间序列数据中的移动平均关系。MA模型利用过去时间步白噪声误差项的线性组合来预测当前观测值,因此可以捕捉到数据中的移动平均性。

相对简单和直观。MA模型的参数表示过去时间步白噪声误差项的权重,可以通过估计这些权重来拟合模型。

缺点:

只能捕捉到移动平均关系,无法捕捉到自回归关系。MA模型忽略了过去时间步观测值,可能无法捕捉到数据中的自相关性。对于某些时间序列数据,MA模型可能需要较高的阶数才能较好地拟合数据,导致模型复杂度增加。

自回归滑动平均模型

自回归滑动平均模型(ARMA模型,Auto-Regression and Moving AverageModel)是研究时间序列的重要方法,由自回归模型(AR模型)与滑动平均模型(MA模型)为基础“混合”而成,具有适用范围广、预测误差小的特点。

自回归差分移动平均线(Autoregressive Integrated Moving Average, ARIMA)

ARIMA 模型是自回归差分移动平均模型的缩写,全称为 Autoregressive Integrated Moving Average Model。这个模型主要由三个部分组成,分别是自回归模型 (AR)、差分过程 (I) 和移动平均模型 (MA)

ARIMA模型的基本思想是利用数据本身的历史信息来预测未来。一个时间点上的标签值既受过去一段时间内的标签值影响,也受过去一段时间内的偶然事件的影响,这就是说,ARIMA模型假设:标签值是围绕着时间的大趋势而波动的,其中趋势是受历史标签影响构成的,波动是受一段时间内的偶然事件影响构成的,且大趋势本身不一定是稳定的

ARIMA模型是一种时间序列分析方法,通过对数据的自相关性和差分进行建模,来提取数据中隐藏的时间序列模式,进而预测未来的数据

AR部分用于处理时间序列的自回归部分,它考虑了过去若干时期的观测值对当前值的影响。I部分用于使非平稳时间序列达到平稳,通过一阶或者二阶等差分处理,消除了时间序列中的趋势和季节性因素。MA部分用于处理时间序列的移动平均部分,它考虑了过去的预测误差对当前值的影响。

结合这三部分,ARIMA模型既可以捕捉到数据的趋势变化,又可以处理那些有临时、突发的变化或者噪声较大的数据。所以,ARIMA模型在很多时间序列预测问题中都有很好的表现。

长处:

模型的构建非常简单,只需要使用内生变量,而无需借助其他外生变量。所谓内生变量是指仅依赖于数据本身的变量,而不像回归模型需要其他变量的支持

缺点:

时序数据的要求是稳定的,或者经过差分处理后变得稳定

本质上只能捕捉线性关系,而不能捕捉非线性关系。

季节性自回归整合移动平均模型 SARIMA

SARIMA是一种常用的时序分析方法,它是ARIMA模型在季节性数据上的扩展。SARIMA模型可以用于预测季节性时间序列数据,例如每年的销售额或每周的网站访问量。以下是SARIMA模型的优缺点:

长处:

SARIMA模型可以很好地处理季节性数据,因为它考虑了时间序列数据中的季节性因素。SARIMA模型可以对时间序列数据进行长期预测,因为它可以捕捉到数据中的趋势和周期性变化。SARIMA模型可以用于多变量时间序列数据,因为它可以同时考虑多个变量之间的关系。

缺点:

SARIMA模型需要大量的历史数据来训练,因此在数据量较少的情况下可能不太适用。SARIMA模型对异常值比较敏感,因此需要对异常值进行处理。SARIMA模型的计算复杂度较高,需要进行大量的计算和优化。

具有外生回归量的季节性自回归整合移动平均模型 SARIMAX

季节性自回归整合移动平均模型(SARIMAX)是在差分移动自回归模型(ARIMA)的基础上加上外生回归量的模型。它适用于具有明显周期性和季节性特征的时间序列数据

3 其他时序模型

这类方法以 lightgbm、xgboost 为代表,一般就是把时序问题转换为监督学习,通过特征工程和机器学习方法去预测;这种模型可以解决绝大多数的复杂的时序预测模型。支持复杂的数据建模,支持多变量协同回归,支持非线性问题。

特征工程的重要性不言而喻,它对于机器学习的成功起到了关键作用。然而,特征工程并不是一项简单的任务,它需要复杂的人工处理和独特的专业知识。特征工程的水平往往决定了机器学习的上限,而机器学习算法只是在尽可能接近这个上限。一旦特征工程完成,我们可以直接应用树模型算法——lightgbm和xgboost。这两个模型是非常常见且高效的建模方法。除此之外,它们还具有以下特点:

计算速度快,模型精度高;缺失值不需要处理,比较方便;支持 category 变量;支持特征交叉。

具体选择哪种方法需要根据数据的性质、问题的特点以及自身的经验和能力来综合考量。

需要根据具体的数据特征、问题要求和自身的能力来选择合适的时间序列预测方法。有时,结合多个方法可以提高预测的准确性和稳定性。同时,为了更好地选择模型和评估预测结果,对数据进行可视化分析和模型诊断也是很重要的。

以上就是时序分析中的常用算法,都在这里了的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/628035.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月11日 09:55:36
下一篇 2025年11月11日 09:56:57

相关推荐

  • html官方资源入口_html网站免费设计导航

    html网站免费设计导航入口是https://www.htmldesignresources.com,该平台提供HTML模板、响应式示例、表单组件和CSS样式资源,支持预览、搜索、筛选与代码复制,并设有社区投稿、论坛交流及季度报告更新功能。 html网站免费设计导航入口在哪里?这是不少网页设计爱好者…

    2025年12月23日
    000
  • HTML数据怎样进行情感分析 HTML数据情感挖掘的实现路径

    答案是:从HTML中提取有效文本并进行情感分析需先清理标签获取正文,再经文本预处理、分词与去噪后,应用词典、机器学习或深度学习模型判断情感倾向,最终整合结果并可视化,实现舆情监控与评价分析。 对HTML数据进行情感分析,核心在于从网页内容中提取有效文本,并在此基础上应用自然语言处理技术判断情感倾向。…

    2025年12月23日
    000
  • HTML5 section怎么用_HTML5内容分区标签应用场景说明

    在HTML5中,标签用于定义文档中具有明确主题的独立内容区块,需包含标题以体现其结构性与语义性,常用于文章章节、产品模块等场景,区别于无语义的和可独立分发的。 在HTML5中,section 标签用于定义文档中的一个独立内容区块。它不是简单的容器,而是有语义的结构化标签,表示文档中一个主题性的分区,…

    2025年12月23日
    000
  • htm算法 前景如何_分析HTM算法应用前景

    HTM算法在实时异常检测、预测性维护等时序数据场景中具备应用价值,其无需大量标注数据的特性适合工业监控、网络安防等领域;但受限于生态薄弱、性能不及主流模型及工程实现难度,短期内难以成为主流,更可能作为边缘计算或AI系统补充技术,在特定专业领域持续发展。 HTM(Hierarchical Tempor…

    2025年12月23日
    000
  • JavaScript数学计算与数值分析库

    math.js适合日常复杂计算,numeric.js专精数值分析,simple-statistics用于统计分析,TensorFlow.js适用于AI与大规模数值运算。 JavaScript虽然原生支持基本的数学运算,但在处理复杂数学计算、数值分析或科学计算时,依赖第三方库能大幅提升开发效率和计算精…

    2025年12月21日
    000
  • 构建基于Vuetify的所见即所得(WYSIWYG)编辑器

    本文探讨了如何利用vuetify的现有组件快速构建一个功能性的所见即所得(wysiwyg)编辑器。我们将重点介绍v-textarea作为内容输入区,以及v-btn-toggle和v-btn作为格式化工具栏的实现方式,并提供示例代码以帮助开发者理解其核心逻辑。同时,文章也提及了脱离框架,从零开始构建w…

    2025年12月21日
    000
  • 浏览器端基于face-api.js的多人脸识别系统构建与优化

    本教程详细探讨了在浏览器中使用face-api.js构建多人脸识别系统时,如何解决人脸误识别的问题。核心在于正确地为每个用户生成独立的标签化人脸描述符(labeledfacedescriptors),并利用facematcher进行高效准确的匹配。文章提供了完整的svelte代码示例,涵盖模型加载、…

    2025年12月20日
    000
  • LangChain HNSWLib 向量存储机制与数据持久化指南

    本文详细解析langchain中hnswlib向量存储的工作原理,明确其作为内存存储的特性,指出数据实际存储在项目部署的服务器上,而非langchain官方服务器。同时,文章将指导如何通过save_local()方法将内存中的向量数据持久化到本地文件,确保数据安全与可靠性,并探讨在实际应用中的注意事…

    2025年12月20日
    000
  • 如何利用 JavaScript 实现一个简单的机器学习模型进行预测或分类?

    答案是JavaScript可实现简单机器学习模型。通过手动实现线性回归和kNN算法,可在前端完成基础预测与分类任务;结合TensorFlow.js则能训练神经网络,支持更复杂场景,适合轻量级应用开发。 用 JavaScript 实现一个简单的机器学习模型是完全可行的,尤其适合初学者理解基本原理或在前…

    2025年12月20日
    000
  • 如何用JavaScript进行计算机视觉的基本处理?

    JavaScript通过Canvas API和图像数据操作可实现基础计算机视觉功能,如灰度化、边缘检测和人脸识别;利用tracking.js、ml5.js等库能简化开发,结合getUserMedia()还可处理实时视频流,适用于Web端轻量级视觉应用。 用JavaScript进行计算机视觉的基本处理…

    2025年12月20日
    000
  • 如何从零开始构建一个属于自己的前端框架?

    答案是:从零构建%ignore_a_1%框架需先明确核心目标,如组件化、响应式、虚拟DOM等,建议从最小功能出发,逐步实现组件系统、数据响应、虚拟DOM diff、声明式API等关键机制,通过实践深入理解React、Vue等框架的底层原理。 从零开始构建一个前端框架听起来很复杂,但只要拆解清楚目标和…

    2025年12月20日
    000
  • JavaScript 字符串部分模糊匹配:一种实用方法

    本文探讨了在 JavaScript 中进行字符串部分模糊匹配的方法,重点解决当待比较字符串长度差异较大时,传统字符串相似度算法表现不佳的问题。文章提供了一种基于单词匹配的简单而有效的解决方案,并附带示例代码,帮助开发者快速实现字符串的相似度比较。 在 JavaScript 中,我们经常需要比较两个字…

    2025年12月20日
    100
  • 如何用WebGPU实现深度学习模型的推理加速?

    WebGPU在深度学习推理中的核心优势体现在性能提升、跨平台支持和隐私保护。它通过更底层的硬件访问能力,利用GPU并行计算显著加速模型推理,相比WebGL减少了CPU与GPU间的数据传输开销;其原生浏览器支持实现了多平台兼容,使AI计算可在用户端完成,保障数据隐私并降低服务器成本。 WebGPU的出…

    2025年12月20日
    000
  • c++如何使用TensorRT进行模型部署优化_c++ NVIDIA推理引擎入门【AI】

    TensorRT是NVIDIA提供的高性能深度学习推理优化库,专为C++设计,通过序列化→优化→部署流程加速已训练模型在GPU上的推理。 TensorRT 是 NVIDIA 提供的高性能深度学习推理(Inference)优化库,专为 C++ 环境设计,能显著提升模型在 GPU 上的运行速度、降低延迟…

    2025年12月19日
    000
  • c++如何使用C++ AMP或CUDA进行GPU编程_c++异构计算入门

    C++中GPU编程主要通过CUDA和C++ AMP实现。1. CUDA由NVIDIA推出,需使用nvcc编译器,在.cu文件中编写kernel函数,通过cudaMalloc分配显存,cudaMemcpy传输数据,配置grid和block启动并行计算。2. C++ AMP是微软提供的库,基于Direc…

    2025年12月19日
    000
  • c++怎么为TensorFlow编写一个自定义的C++ Op_C++深度学习扩展与TensorFlow自定义操作

    自定义Op需注册接口、实现Kernel并编译加载。1. REGISTER_OP定义输入输出及形状;2. 继承OpKernel重写Compute实现计算逻辑;3. 用Bazel构建so文件,Python中tf.load_op_library加载;4. 注意形状推断、内存安全与设备匹配,LOG辅助调试。…

    2025年12月19日
    000
  • c++怎么用libtorch加载一个PyTorch模型_C++深度学习模型加载与libtorch实践

    首先需将PyTorch模型转为TorchScript格式,再通过LibTorch在C++中加载并推理。具体步骤包括:使用torch.jit.trace或torch.jit.script导出模型为.pt文件;配置LibTorch开发环境,包含下载库、设置CMake并链接依赖;在C++中调用torch:…

    2025年12月19日 好文分享
    000
  • 怎样在C++中实现神经网络_深度学习基础实现

    在c++++中实现神经网络的关键在于选择合适的库、定义神经元和层、实现激活函数、前向传播、反向传播,并选择优化算法。1. 选择合适的库,如eigen进行矩阵运算;2. 定义神经元和层类以实现前向传播;3. 实现sigmoid、relu等激活函数;4. 实现前向传播计算输出;5. 实现反向传播用于训练…

    2025年12月18日 好文分享
    000
  • C语言算法:深度学习与算法应用

    摘要:本教程介绍了 c 语言中的深度学习算法及其应用。基本算法包括:线性回归:训练模型并最小化误差。逻辑回归:计算逻辑函数和训练模型。决策树:创建节点并训练树模型。实战案例:图像分类:读入图像数据。训练卷积神经网络。根据预测模型进行图像分类。 C 语言算法:深度学习与算法应用 引言 深度学习是机器学…

    2025年12月18日
    000
  • 如何将C++框架与深度学习集成

    将 c++++ 框架与深度学习集成可提升效率和算法能力,方法如下:安装 tensorflow c api 或 pytorch c++ api创建 c++ 项目加载深度学习模型:tensorflow 使用 loadsavedmodel,pytorch 使用 torch::jit::load集成深度学习…

    2025年12月18日
    000

发表回复

登录后才能评论
关注微信