飞桨模型在地平线开发板部署

国产深度学习框架paddlepaddle与国产世界首款AI芯片,未能形成有效的通路,非常让人遗憾。在海思缺货的今天,地平线旭日系列是很好的替代品,此项目讲述如何实现飞桨模型在地平线开发板的部署!

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

飞桨模型在地平线开发板部署 - 创想鸟

大家好,我是海盗旗,资深CV工程师(ctrl c + ctrl v),第一次使用国产框架与国产AI芯片(地平线旭日X3)之间实现了全链路开发。

本次教程,使用飞桨高阶API训练mobilenet模型,三分钟即可搭建一个网络,进行训练。

部署使用地平线的天工开物工具链,模型快速转化上板,极短的时间内可演示demo。

欢迎大家一起使用国产化平台进行AI开发与部署!

整体开发流程,来个图感受下

飞桨模型在地平线开发板部署 - 创想鸟

onnx模型是paddle模型与开发板推理部署之间的桥梁,模型的转化是其中非常重要的一环。

本次教程主要讲述流程串通,直接使用飞浆的高阶api训练模型,可以节省大量的开发时间

一、模型训练:

飞桨高阶api对基础aoi进行了封装,模型调用与数据预处理几行代码就可以搞定,真的是灰常方便,建议大家多多使用。

本次教程使用mobilenetv2进行分类,数据预处理的时候,模型标签是从1-102,但是深度学习标签都是从0开始,建议百度的工程师修改一下此处的标签。 本次教程使用mobilenetv2进行分类,数据预处理的时候,模型标签是从1-102,但是深度学习标签都是从0开始。

修改的方法需要把标签数直接减去1,这样标签数据对齐到0-101,可以直接训练,否则会报错,标签索引超出!

In [ ]

#只要20行代码,深度学习模型带回家,高阶api,用起来吧import paddle from paddle.vision.datasets import Flowersfrom paddle.vision.models import MobileNetV2,mobilenet_v2from paddle.vision.transforms import ToTensor,Compose, Resize, ColorJitterprint('===============================start train')transform = Compose([Resize(size=[228,228]),ToTensor()])#预处理train_dataset = Flowers(mode='train',transform=transform)#标签转换为0-101,不改的话,下面的标签需要改成103train_dataset.labels = train_dataset.labels-1  #花有102种类别#创建模型mobilenetv2 = MobileNetV2(num_classes=102)# paddle.summary(mobilenetv2,(1,3,228,228)) 测试模型model = paddle.Model(mobilenetv2)#模型封装model.load('./Model/7')#一天只有十个小时,太难了,只能分段训练、、、model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),              paddle.nn.CrossEntropyLoss(),              paddle.metric.Accuracy())model.fit(train_dataset,          epochs=200,          batch_size=64,          save_dir='Model/cpu',          save_freq=1,          verbose=1)print('===============================finish train')
===============================start train
Cache file /home/aistudio/.cache/paddle/dataset/flowers/102flowers.tgz not found, downloading http://paddlemodels.bj.bcebos.com/flowers/102flowers.tgz Begin to downloadDownload finishedCache file /home/aistudio/.cache/paddle/dataset/flowers/imagelabels.mat not found, downloading http://paddlemodels.bj.bcebos.com/flowers/imagelabels.mat Begin to download.Download finishedCache file /home/aistudio/.cache/paddle/dataset/flowers/setid.mat not found, downloading http://paddlemodels.bj.bcebos.com/flowers/setid.mat Begin to download....Download finished
The loss value printed in the log is the current step, and the metric is the average value of previous step.Epoch 1/200
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:77: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working  return (isinstance(seq, collections.Sequence) and/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:648: UserWarning: When training, we now always track global mean and variance.  "When training, we now always track global mean and variance.")
step 40/49 [=======================>......] - loss: 1.4217 - acc: 0.5318 - ETA: 12:06 - 81s/st

二、paddle模型转化为onnx模型

使用百度的paddle2onnx工具进行转化

!pip insyall paddle2onnx

!pip install onnx

安装好之后,按照官方示例,加载模型,然后使用paddle.onnx.export接口进行转化,现在流行动态图,我们直接使用动态图操作方式,让静态图静静的躺在历史的尘埃里吧!!!

###注意###

模型输入需要设定batch为1,地平线开发板写死了入口,指定输入为4D,且batch只能为1,因此转化的时候需要设置如下形式:

input_spec = paddle.static.InputSpec(shape=[1, 3, 224, 224], dtype=’float32′, name=’image’)

In [ ]

import paddle import paddle2onnximport onnxfrom paddle.vision.models import MobileNetV2print(onnx.__version__,paddle.__version__,paddle2onnx.__version__)# 实例化模型mobilenetv2 = MobileNetV2(num_classes=102)#封装并加载模型model = paddle.Model(mobilenetv2)model.load(path='./save_model/0')#把模型从封装的Model中剥离出来net = model.network# 将模型设置为推理状态net.eval()# 定义输入数据input_spec = paddle.static.InputSpec(shape=[1, 3, 224, 224], dtype='float32', name='image')# ONNX模型导出# enable_onnx_checker设置为True,表示使用官方ONNX工具包来check模型的正确性,需要安装ONNX(pip install onnx)paddle.onnx.export(net, 'mobilenet_v2', input_spec=[input_spec], opset_version=10, enable_onnx_checker=True)

三、onnx模型校验

成功得到onnx模型之后,我们需要把onnx模型转化为板端部署文件 地平线提供了天工开物工具链,可以有效的对onnx模型进行验证并转化

部署第一步,使用工具链对onnx模型进行校验,校验不通过的模型目前无法上板部署,需要调整算子或提交地平线开发人员进行算子支持升级!!

工具链可在地平线生态社区获取,大家可以自行搜索!

飞桨模型在地平线开发板部署 - 创想鸟

开发板支持模型列表:

飞桨模型在地平线开发板部署 - 创想鸟

In [ ]

#!/usr/bin/env sh# Copyright (c) 2020 Horizon Robotics.All Rights Reserved.## The material in this file is confidential and contains trade secrets# of Horizon Robotics Inc. This is proprietary information owned by# Horizon Robotics Inc. No part of this work may be disclosed,# reproduced, copied, transmitted, or used in any way for any purpose,# without the express written permission of Horizon Robotics Inc.set -excd $(dirname $0) || exitmodel_type="onnx"onnx_model="../../../01_common/modelzoo/mapper/classification/mobilenet/mobilenet_v2.onnx"output="./mobilenet_checker.log"march="bernoulli2"hb_mapper checker --model-type ${model_type}                   --model ${onnx_model}                   --output ${output} --march ${march}

四、onnx模型转化为板端推理文件

使用地平线的开发工具天公开物,开发套件内包含各种写好的脚本,可以快速实现校验与推理,节省开发者时间!

In [ ]

#!/bin/bash# Copyright (c) 2020 Horizon Robotics.All Rights Reserved.## The material in this file is confidential and contains trade secrets# of Horizon Robotics Inc. This is proprietary information owned by# Horizon Robotics Inc. No part of this work may be disclosed,# reproduced, copied, transmitted, or used in any way for any purpose,# without the express written permission of Horizon Robotics Inc.set -e -vcd $(dirname $0) || exitconfig_file="./mobilenet_config.yaml"model_type="caffe"# build modelhb_mapper makertbin --config ${config_file}                      --model-type  ${model_type}

In [ ]

# Copyright (c) 2020 Horizon Robotics.All Rights Reserved.## The material in this file is confidential and contains trade secrets# of Horizon Robotics Inc. This is proprietary information owned by# Horizon Robotics Inc. No part of this work may be disclosed,# reproduced, copied, transmitted, or used in any way for any purpose,# without the express written permission of Horizon Robotics Inc.# 模型转化相关的参数# model conversion related parametersmodel_parameters:  # Caffe浮点网络数据模型文件  # the model file of floating-point Caffe neural network data  onnx_model: '../../../01_common/modelzoo/mapper/classification/mobilenet/mobilenet_v2.onnx'  # Caffe网络描述文件  # the file describes the structure of Caffe neural network  #prototxt: '../../../01_common/modelzoo/mapper/classification/mobilenet/mobilenet_deploy.prototxt'  # 适用BPU架构  # the applicable BPU architecture  march: "bernoulli2"  # 指定模型转换过程中是否输出各层的中间结果,如果为True,则输出所有层的中间输出结果,  # ---------------------------------------------------------------------------------------  # specifies whether or not to dump the intermediate results of all layers in conversion  # if set to True, then the intermediate results of all layers shall be dumped  layer_out_dump: False  # 用于设置上板模型输出的layout, 支持NHWC和NCHW, 输入None则使用模型默认格式  # ---------------------------------------------------------------------  # is used for specifying the layout of model output on dev board  # both NHWC and NCHW layouts are supported,   # if input is None then the default layout of the model will be used  output_layout: None  # 日志文件的输出控制参数,  # debug输出模型转换的详细信息  # info只输出关键信息  # warn输出警告和错误级别以上的信息  # ----------------------------------------------------------------------------------------  # output control parameter of log file(s),  # if set to 'debug', then details of model conversion will be dumped  # if set to 'info', then only important imformation will be dumped  # if set to 'warn', then information ranked higher than 'warn' and 'error' will be dumped  log_level: 'debug'  # 模型转换输出的结果的存放目录  # the directory in which model conversion results are stored  working_dir: 'model_output'  # 模型转换输出的用于上板执行的模型文件的名称前缀  # model conversion generated name prefix of those model files used for dev board execution  output_model_file_prefix: 'mobilenetv2_pd'# 模型输入相关参数, 若输入多个节点, 则应使用';'进行分隔, 使用默认缺省设置则写None# -------------------------------------------------------------------------# model input related parameters,# please use ";" to seperate when inputting multiple nodes,# please use None for default settinginput_parameters:  # (可不填) 模型输入的节点名称, 此名称应与模型文件中的名称一致, 否则会报错, 不填则会使用模型文件中的节点名称  # -------------------------------------------------------------------------------------------------  # (it's OK to leave blank) node name of model input,  # it shall be the same as the name of model file, otherwise an error will be reported,  # the node name of model file will be used when left blank  #input_name: data  # 网络实际执行时,输入给网络的数据格式,包括 nv12/rgbp/bgrp/yuv444_128/gray/featuremap,  # 如果输入的数据为yuv444_128, 模型训练用的是bgrp,则hb_mapper将自动插入YUV到BGRP(NCHW)转化操作  # ------------------------------------------------------------------------------------------  # the data formats to be passed into neural network when actually performing neural network  # whose values includes: nv12/rgbp/bgrp/yuv444_128/gray/featuremap  # note that hb_mapper will automatically convert YUV into BGRP(NCHW)  # if the input data is yuv444_128 while BGRP is used in model training  input_type_rt: 'yuv444_128'  # 网络训练时输入的数据格式,可选的值为rgbp/bgrp/gray/featuremap/yuv444_128  # ---------------------------------------------------------------------  # the data formats in network training  # available options include: rgbp/bgrp/gray/featuremap/yuv444_128  input_type_train: 'bgrp'  # 模型网络的输入大小, 以'x'分隔, 不填则会使用模型文件中的网络输入大小,否则会覆盖模型文件中输入大小  # input_shape: ''  # 网络输入的预处理方法,主要有以下几种:  # no_preprocess 不做任何操作  # data_mean 减去通道均值mean_value  # data_scale 对图像像素乘以data_scale系数  # data_mean_and_scale 减去通道均值后再乘以scale系数  # -------------------------------------------------------------------------------------------  # the input size of model network, seperated by 'x'  # note that the network input size of model file will be used if left blank  # otherwise it will overwrite the input size of model file  # input_shape: ''  # preprocessing methods of network input, consist of the follwing:  # 'no_preprocess' indicates that no preprocess will be made   # 'data_mean' indicates that to minus the channel mean, i.e. mean_value  # 'data_scale' indicates that image pixels to multiply data_scale ratio  # 'data_mean_and_scale' indicates that to multiply scale ratio after channel mean is minused  norm_type: 'data_mean_and_scale'  # 图像减去的均值, 如果是通道均值,value之间必须用空格分隔  # --------------------------------------------------------------------------  # the mean value minused by image  # note that values must be seperated by space if channel mean value is used  mean_value: 103.94 116.78 123.68  # 图像预处理缩放比例,如果是通道缩放比例,value之间必须用空格分隔  # ---------------------------------------------------------------------------  # scale value of image preprocess  # note that values must be seperated by space if channel scale value is used  scale_value: 0.017calibration_parameters:  # 模型量化的参考图像的存放目录,图片格式支持Jpeg、Bmp等格式,输入的图片  # 应该是使用的典型场景,一般是从测试集中选择20~100张图片,另外输入  # 的图片要覆盖典型场景,不要是偏僻场景,如过曝光、饱和、模糊、纯黑、纯白等图片  # 若有多个输入节点, 则应使用';'进行分隔  # -----------------------------------------------------------------------  # the directory where reference images of model quantization are stored  # image formats include JPEG, BMP etc.  # should be classic application scenarios, usually 20~100 images are picked out from test datasets  # in addition, note that input images should cover typical scenarios  # and try to avoid those overexposed, oversaturated, vague,   # pure blank or pure white images  # use ';' to seperate when there are multiple input nodes  cal_data_dir: './calibration_data_bgrp'  # 如果输入的图片文件尺寸和模型训练的尺寸不一致时,并且preprocess_on为true,  # 则将采用默认预处理方法(skimage resize),  # 将输入图片缩放或者裁减到指定尺寸,否则,需要用户提前把图片处理为训练时的尺寸  # ----------------------------------------------------------------------------------  # In case the size of input image file is different from that of in model training  # and that preprocess_on is set to True,  # shall the default preprocess method(skimage resize) be used  # i.e., to resize or crop input image into specified size  # otherwise user must keep image size as that of in training in advance  preprocess_on: False  # 模型量化的算法类型,支持kl、max,通常采用KL即可满足要求  # ------------------------------------------------------------  # types of model quantization algorithms  # kl and max are supported, usually kl works  calibration_type: 'kl'# 编译器相关参数# compiler related parameterscompiler_parameters:  # 编译策略,支持bandwidth和latency两种优化模式;  # bandwidth以优化ddr的访问带宽为目标;  # latency以优化推理时间为目标  # ------------------------------------------------------------------------------------------  # compilation strategy, there are 2 available optimization modes: 'bandwidth' and 'lantency'  # the 'bandwidth' mode aims to optimize ddr access bandwidth  # while the 'lantency' mode aims to optimize inference duration  compile_mode: 'latency'  # 设置debug为True将打开编译器的debug模式,能够输出性能仿真的相关信息,如帧率、DDR带宽占用等  # -----------------------------------------------------------------------------------  # the compiler's debug mode will be enabled by setting to True  # this will dump performance simulation related information  # such as: frame rate, DDR bandwidth usage etc.  debug: False  # 编译模型指定核数,不指定默认编译单核模型, 若编译双核模型,将下边注释打开即可  # -------------------------------------------------------------------------------------  # specifies number of cores to be used in model compilation   # as default, single core is used as this value left blank  # please delete the "# " below to enable dual-core mode when compiling dual-core model    # core_num: 2    # -------------------------------------------------------------------------------------  # 优化等级可选范围为O0~O3  # O0不做任何优化, 编译速度最快,优化程度最低,  # O1-O3随着优化等级提高,预期编译后的模型的执行速度会更快,但是所需编译时间也会变长。  # 推荐用O2做最快验证  # ----------------------------------------------------------------------------  # optimization level ranges between O0~O3  # O0 indicates that no optimization will be made   # the faster the compilation, the lower optimization level will be  # O1-O3: as optimization levels increase gradually, model execution, after compilation, shall become faster  # while compilation will be prolonged  # it is recommended to use O2 for fastest verification  optimize_level: 'O3'

In [ ]

完成onnx模型->地平线开发板模型,转化得到的bin文件很小,只有2.4M,小了一个量级以上

五、部署与测试

继续使用天公开物工具链,调用上板测试模块

In [ ]

1.构建应用:# parallel_process_num的设置,参考您的cpu配置,如果不设置这个环境变量,默认为单进程cd samples/04_detection/01_yolov2/runtime_armsh 01_build.sh2.数据预处理# parallel_process_num的设置,参考您的cpu配置,如果不设置这个环境变量,默认为单进程export PARALLEL_PROCESS_NUM=${parallel_process_num}sh 02_preprocess.sh处理好的图像将会用于后续的评测eval3.将构建好的应用传到开发板sh 03_scp_to_board.sh ${board_ip}执行这个命令,会将构建好的应用,通过scp,传输到开发板的 /userdata/samples/mobilenet 目录下。若要执行单张图片的infer, 则可通过下面的代码操作远程登录开发板进行执行ssh root@${board_ip}cd /userdata/samples/yolov2sh dev_board_01_infer.sh4.执行评测sh 04_eval.sh ${board_ip}该脚本会将图片传输至板上进行运行和评测, 此过程将持续很久.5.执行性能测试sh 05_perf.sh ${board_ip}同时该操作也可从开发板上单独完成, 则可通过下面的代码操作远程登录开发板进行执行ssh root@${board_ip}cd /userdata/samples/yolov2sh dev_board_03_perf.sh————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————最终结果:性能测试,10张图像仅用了34.01ms,速度经得起检验,精度损失极少I0101 10:41:40.973683  1899 simple_example.cc:172] Whole process statistics:count:10, duration:34.01ms, min:3.342ms, max:3.823ms, average:3.35562ms, fps:294.031/s, Infer stage statistics:count:10, duration:33.869ms, min:3.33ms, max:3.794ms, average:3.34312ms, fps:295.255/s, Post process stage statistics:count:10, duration:0.125ms, min:0.01ms, max:0.027ms, average:0.011ms, fps:80000/s

以上就是飞桨模型在地平线开发板部署的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/65817.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月12日 03:06:36
下一篇 2025年11月12日 03:20:50

相关推荐

发表回复

登录后才能评论
关注微信