Paddle2.0:浅析并实现 CoaT 模型

本文介绍基于Transformer的图像分类器CoaT,其含Co-Scale和Conv-Attentional机制,能为Vision Transformer提供多尺度和上下文建模功能,性能超T2T-ViT等网络。还阐述了Conv-Attention模块、Co-Scale机制的原理与代码实现,搭建了模型并验证了精度。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

paddle2.0:浅析并实现 coat 模型 - 创想鸟

引入

在本文中介绍了 Co-scale conv-attentional image Transformers(CoaT)这是一种基于 Transformer 的图像分类器,其主要包含 Co-Scale 和 Conv-Attentional 机制设计CoaT 为 Vision Transformer 提供了丰富的多尺度和上下文建模功能,表现SOTA,性能优于 T2T-ViT、DeiT、PVT 等网络

相关资料

论文:Co-Scale Conv-Attentional Image Transformers官方实现:mlpc-ucsd/CoaT

主要改进

设计了一个 Conv-Attention 模块,利用类似卷积的注意力操作,在 Factorized Attention 模块中实现相对位置嵌入。引入了一种 Co-Scale 机制,开发了串行块和并行块 2 种 Co-Scale 块,实现了从细到粗、从粗到细和跨尺度的注意力图像建模。

Conv-Attention 模块

原理介绍

其实注意力模型也很早就已经被引入视觉领域。LocalNet、Standalone Self-Attention 等用 Self-Attention 模块代替类 resnet 架构中的卷积,更好地实现 Local 和 Non-Local 关系建模。而 ViT 和 DeiT 则直接采用 Transformer 进行图像识别。最近有研究通过引入卷积来增强注意力机制。LambdaNets 引入了一种有效的 Self-Attention 替代方法用于全局上下文建模,并在局部上下文建模中采用3D卷积实现相对位置嵌入。CPVT 将 2D 深度卷积设计为 Self-Attention 后的条件位置编码。在 Conv-Attention 中:采用 Lambdanetworks 之后的高效因式注意力;设计了一种深度基于卷积的相对位置编码;将其扩展为卷积位置编码的一种替代情况。

Factorized Attention 机制

Paddle2.0:浅析并实现 CoaT 模型 - 创想鸟

Paddle2.0:浅析并实现 CoaT 模型 - 创想鸟

Convolution as Position Encoding

Paddle2.0:浅析并实现 CoaT 模型 - 创想鸟

Conv-Attentional Mechanism

Paddle2.0:浅析并实现 CoaT 模型 - 创想鸟

代码实现

class ConvRelPosEnc(nn.Layer):    """ Convolutional relative position encoding. """    def __init__(self, Ch, h, window):        """        Initialization.            Ch: Channels per head.            h: Number of heads.            window: Window size(s) in convolutional relative positional encoding. It can have two forms:                    1. An integer of window size, which assigns all attention heads with the same window size in ConvRelPosEnc.                    2. A dict mapping window size to #attention head splits (e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2})                       It will apply different window size to the attention head splits.        """        super().__init__()        if isinstance(window, int):            # Set the same window size for all attention heads.            window = {window: h}            self.window = window        elif isinstance(window, dict):            self.window = window        else:            raise ValueError()        self.conv_list = nn.LayerList()        self.head_splits = []        for cur_window, cur_head_split in window.items():            # Use dilation=1 at default.            dilation = 1            padding_size = (cur_window + (cur_window - 1)                            * (dilation - 1)) // 2            cur_conv = nn.Conv2D(cur_head_split*Ch, cur_head_split*Ch,                                 kernel_size=(cur_window, cur_window),                                 padding=(padding_size, padding_size),                                 dilation=(dilation, dilation),                                 groups=cur_head_split*Ch,                                 )            self.conv_list.append(cur_conv)            self.head_splits.append(cur_head_split)        self.channel_splits = [x*Ch for x in self.head_splits]    def forward(self, q, v, size):        B, h, N, Ch = q.shape        H, W = size        assert N == 1 + H * W        # Convolutional relative position encoding.        # Shape: [B, h, H*W, Ch].        q_img = q[:, :, 1:, :]        # Shape: [B, h, H*W, Ch].        v_img = v[:, :, 1:, :]        # Shape: [B, h, H*W, Ch] -> [B, h*Ch, H, W].        v_img = v_img.reshape((B, h, H, W, Ch))        v_img = v_img.transpose((0, 1, 4, 2, 3))        v_img = v_img.flatten(1, 2)        # v_img = rearrange(v_img, 'B h (H W) Ch -> B (h Ch) H W', H=H, W=W)        # Split according to channels.        v_img_list = paddle.split(v_img, self.channel_splits, axis=1)        conv_v_img_list = [conv(x)                           for conv, x in zip(self.conv_list, v_img_list)]        conv_v_img = paddle.concat(conv_v_img_list, axis=1)        # Shape: [B, h*Ch, H, W] -> [B, h, H*W, Ch].        conv_v_img = conv_v_img.reshape((B, h, Ch, H, W))        conv_v_img = conv_v_img.transpose((0, 1, 3, 4, 2))        conv_v_img = conv_v_img.flatten(2, 3)        # conv_v_img = rearrange(conv_v_img, 'B (h Ch) H W -> B h (H W) Ch', h=h)        EV_hat_img = q_img * conv_v_img        zero = paddle.zeros((B, h, 1, Ch), dtype=q.dtype)        # Shape: [B, h, N, Ch].        EV_hat = paddle.concat((zero, EV_hat_img), axis=2)        return EV_hatclass FactorAtt_ConvRelPosEnc(nn.Layer):    """ Factorized attention with convolutional relative position encoding class. """    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., shared_crpe=None):        super().__init__()        self.num_heads = num_heads        head_dim = dim // num_heads        self.scale = qk_scale or head_dim ** -0.5        self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)        # Note: attn_drop is actually not used.        self.attn_drop = nn.Dropout(attn_drop)        self.proj = nn.Linear(dim, dim)        self.proj_drop = nn.Dropout(proj_drop)        # Shared convolutional relative position encoding.        self.crpe = shared_crpe    def forward(self, x, size):        B, N, C = x.shape        # Generate Q, K, V.        # Shape: [3, B, h, N, Ch].        qkv = self.qkv(x).reshape(            (B, N, 3, self.num_heads, C // self.num_heads)        ).transpose((2, 0, 3, 1, 4))        # Shape: [B, h, N, Ch].        q, k, v = qkv[0], qkv[1], qkv[2]        # Factorized attention.        # Softmax on dim N.        k_softmax = nn.functional.softmax(k, axis=2)        # Shape: [B, h, Ch, Ch].        k_softmax_T_dot_v = paddle.matmul(k_softmax.transpose((0, 1, 3, 2)), v)        # k_softmax_T_dot_v = einsum('b h n k, b h n v -> b h k v', k_softmax, v)        # Shape: [B, h, N, Ch].        # factor_att = einsum('b h n k, b h k v -> b h n v', q, k_softmax_T_dot_v)        factor_att = paddle.matmul(q, k_softmax_T_dot_v)        # Convolutional relative position encoding.        # Shape: [B, h, N, Ch].        crpe = self.crpe(q, v, size=size)        # Merge and reshape.        x = self.scale * factor_att + crpe        # Shape: [B, h, N, Ch] -> [B, N, h, Ch] -> [B, N, C].        x = x.transpose((0, 2, 1, 3)).reshape((B, N, C))        # Output projection.        x = self.proj(x)        x = self.proj_drop(x)        # Shape: [B, N, C].        return xclass ConvPosEnc(nn.Layer):    """ Convolutional Position Encoding.         Note: This module is similar to the conditional position encoding in CPVT.    """    def __init__(self, dim, k=3):        super(ConvPosEnc, self).__init__()        self.proj = nn.Conv2D(dim, dim, k, 1, k//2, groups=dim)    def forward(self, x, size):        B, N, C = x.shape        H, W = size        assert N == 1 + H * W        # Extract CLS token and image tokens.        # Shape: [B, 1, C], [B, H*W, C].        cls_token, img_tokens = x[:, :1], x[:, 1:]        # Depthwise convolution.        feat = img_tokens.transpose((0, 2, 1)).reshape((B, C, H, W))        x = self.proj(feat) + feat        x = x.flatten(2).transpose((0, 2, 1))        # Combine with CLS token.        x = paddle.concat((cls_token, x), axis=1)        return x

Co-Scale 机制

原理介绍

其实多尺度方法在CV领域有着悠久的历史。比如U-Net除了标准的细到粗路径之外,还强制执行额外的粗到细路径;HRNet通过在整个卷积层中同时保持细尺度和粗尺度,进一步增强了模型表征能力。在 Pyramid ViT 就是一个类似的工作,将不同尺度层做相互融合,但 Pyramid ViT 只是执行一种从细到粗的策略。这里提出的 Co-Scale 机制不同于现有的方法:CoaT 由一系列高度模块化的串行和并行块组成,可以对标记化表示进行从细到粗、从粗到细以及跨尺度的关注。在 Co-Scale 模块中,跨不同尺度的联合注意力机制提供了比现有多尺度方法中的标准线性融合更强的建模能力。在本文中作者提出了以下两种 Co-Scale 块。

CoaT Serial Block

在一个典型的 serial block 中:首先,使用一个 patch 嵌入层 (2D 卷积层) 按一定比例对输入特征映射进行下采样,并将缩减后的特征映射 flatten 为一系列图像 token。然后,将图像 token 与附加的 CLS token 连接起来,并应用到多个常规注意力模块来学习图像 token 和 CLS token 之间的内部关系。最后,将 CLS token 从图像 token 中分离出来,并将图像 token reshape 为二维特征映射,用于下一个串行块。

Paddle2.0:浅析并实现 CoaT 模型 - 创想鸟

CoaT Parallel Block

作者在每个并行组的并行块之间实现了跨尺度的注意。在一个典型的并行组中,我们有来自不同尺度的串行块的输入特征序列 (image token 和 CLS token)。为了实现并行组的从细到粗、从粗到细和跨尺度的注意力,我们提出了两种策略(1)直接跨层注意力(direct cross-layer attention)(2)特征插值注意力(attention with feature interpolation)在论文中,作者采用“特征插值注意力”来提高经验性能。在“直接跨层注意力”中,从每个尺度的输入特征中形成查询、键和值向量。对于同一层中的注意力,使用 Conv-Attention (下图2),并使用来自当前尺度(Scale)的 query、key 和 value 向量。对于不同层次的注意力,对 key 和 value 向量进行上下采样,以匹配其他尺度的分辨率。然后执行 Cross-Attention,它通过来自当前尺度的 query 向量和来自另一个尺度 key 和 value 向量来扩展 Conv-Attention。最后,我们将 Conv-Attention 和 Cross-Attention 的输出求和,并应用共享的前馈层(FFN)。通过“直接跨层注意力”,跨层信息以 Cross-Attention 的方式融合。

Paddle2.0:浅析并实现 CoaT 模型 - 创想鸟

Paddle2.0:浅析并实现 CoaT 模型 - 创想鸟

代码实现

class SerialBlock(nn.Layer):    """ Serial block class.        Note: In this implementation, each serial block only contains a conv-attention and a FFN (MLP) module. """    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, epsilon=1e-6,                 shared_cpe=None, shared_crpe=None):        super().__init__()        # Conv-Attention.        self.cpe = shared_cpe        self.norm1 = norm_layer(dim, epsilon=epsilon)        self.factoratt_crpe = FactorAtt_ConvRelPosEnc(            dim,             num_heads=num_heads,             qkv_bias=qkv_bias,             qk_scale=qk_scale,             attn_drop=attn_drop,             proj_drop=drop,            shared_crpe=shared_crpe        )        self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()        # MLP.        self.norm2 = norm_layer(dim, epsilon=epsilon)        mlp_hidden_dim = int(dim * mlp_ratio)        self.mlp = Mlp(            in_features=dim,             hidden_features=mlp_hidden_dim,            act_layer=act_layer,             drop=drop        )    def forward(self, x, size):        # Conv-Attention.        # Apply convolutional position encoding.        x = self.cpe(x, size)        cur = self.norm1(x)        # Apply factorized attention and convolutional relative position encoding.        cur = self.factoratt_crpe(cur, size)        x = x + self.drop_path(cur)        # MLP.        cur = self.norm2(x)        cur = self.mlp(cur)        x = x + self.drop_path(cur)        return xclass ParallelBlock(nn.Layer):    """ Parallel block class. """    def __init__(self, dims, num_heads, mlp_ratios=[], qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, epsilon=1e-6,                 shared_cpes=None, shared_crpes=None):        super().__init__()        # Conv-Attention.        self.cpes = shared_cpes        self.norm12 = norm_layer(dims[1], epsilon=epsilon)        self.norm13 = norm_layer(dims[2], epsilon=epsilon)        self.norm14 = norm_layer(dims[3], epsilon=epsilon)        self.factoratt_crpe2 = FactorAtt_ConvRelPosEnc(            dims[1], num_heads=num_heads, qkv_bias=qkv_bias,             qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,            shared_crpe=shared_crpes[1]        )        self.factoratt_crpe3 = FactorAtt_ConvRelPosEnc(            dims[2], num_heads=num_heads, qkv_bias=qkv_bias,             qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,            shared_crpe=shared_crpes[2]        )        self.factoratt_crpe4 = FactorAtt_ConvRelPosEnc(            dims[3], num_heads=num_heads, qkv_bias=qkv_bias,             qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,            shared_crpe=shared_crpes[3]        )        self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()        # MLP.        self.norm22 = norm_layer(dims[1], epsilon=epsilon)        self.norm23 = norm_layer(dims[2], epsilon=epsilon)        self.norm24 = norm_layer(dims[3], epsilon=epsilon)        # In parallel block, we assume dimensions are the same and share the linear transformation.        assert dims[1] == dims[2] == dims[3]        assert mlp_ratios[1] == mlp_ratios[2] == mlp_ratios[3]        mlp_hidden_dim = int(dims[1] * mlp_ratios[1])        self.mlp2 = self.mlp3 = self.mlp4 = Mlp(            in_features=dims[1],             hidden_features=mlp_hidden_dim,             act_layer=act_layer,             drop=drop        )    def upsample(self, x, factor, size):        """ Feature map up-sampling. """        return self.interpolate(x, scale_factor=factor, size=size)    def downsample(self, x, factor, size):        """ Feature map down-sampling. """        return self.interpolate(x, scale_factor=1.0/factor, size=size)    def interpolate(self, x, scale_factor, size):        """ Feature map interpolation. """        B, N, C = x.shape        H, W = size        assert N == 1 + H * W        cls_token = x[:, :1, :]        img_tokens = x[:, 1:, :]        img_tokens = img_tokens.transpose((0, 2, 1)).reshape((B, C, H, W))        img_tokens = F.interpolate(            img_tokens,             scale_factor=scale_factor,             mode='bilinear'        )        img_tokens = img_tokens.reshape((B, C, -1)).transpose((0, 2, 1))        out = paddle.concat((cls_token, img_tokens), axis=1)        return out    def forward(self, x1, x2, x3, x4, sizes):        _, (H2, W2), (H3, W3), (H4, W4) = sizes        # Conv-Attention.        x2 = self.cpes[1](x2, size=(H2, W2))  # Note: x1 is ignored.        x3 = self.cpes[2](x3, size=(H3, W3))        x4 = self.cpes[3](x4, size=(H4, W4))        cur2 = self.norm12(x2)        cur3 = self.norm13(x3)        cur4 = self.norm14(x4)        cur2 = self.factoratt_crpe2(cur2, size=(H2, W2))        cur3 = self.factoratt_crpe3(cur3, size=(H3, W3))        cur4 = self.factoratt_crpe4(cur4, size=(H4, W4))        upsample3_2 = self.upsample(cur3, factor=2, size=(H3, W3))        upsample4_3 = self.upsample(cur4, factor=2, size=(H4, W4))        upsample4_2 = self.upsample(cur4, factor=4, size=(H4, W4))        downsample2_3 = self.downsample(cur2, factor=2, size=(H2, W2))        downsample3_4 = self.downsample(cur3, factor=2, size=(H3, W3))        downsample2_4 = self.downsample(cur2, factor=4, size=(H2, W2))        cur2 = cur2 + upsample3_2 + upsample4_2        cur3 = cur3 + upsample4_3 + downsample2_3        cur4 = cur4 + downsample3_4 + downsample2_4        x2 = x2 + self.drop_path(cur2)        x3 = x3 + self.drop_path(cur3)        x4 = x4 + self.drop_path(cur4)        # MLP.        cur2 = self.norm22(x2)        cur3 = self.norm23(x3)        cur4 = self.norm24(x4)        cur2 = self.mlp2(cur2)        cur3 = self.mlp3(cur3)        cur4 = self.mlp4(cur4)        x2 = x2 + self.drop_path(cur2)        x3 = x3 + self.drop_path(cur3)        x4 = x4 + self.drop_path(cur4)        return x1, x2, x3, x4

模型架构

CoaT 的模型架构如下图所示:

Paddle2.0:浅析并实现 CoaT 模型 - 创想鸟

本文开发了三种不同模型尺寸的 CoaT 和 CoaT-Lite,分别为 Tiny, Mini 和 Small。

Paddle2.0:浅析并实现 CoaT 模型 - 创想鸟

模型搭建

上面介绍了 CoaT 模型的一些重要的改进点接下来就完整地搭建一下模型

模型组网

In [1]

import paddleimport paddle.nn as nnimport paddle.nn.functional as Ffrom common import DropPath, Identityfrom common import to_2tuple, add_parameterfrom common import trunc_normal_, ones_, zeros_class Mlp(nn.Layer):    """ Feed-forward network (FFN, a.k.a. MLP) class. """    def __init__(self, in_features, hidden_features=None,                 out_features=None, act_layer=nn.GELU, drop=0.):        super().__init__()        out_features = out_features or in_features        hidden_features = hidden_features or in_features        self.fc1 = nn.Linear(in_features, hidden_features)        self.act = act_layer()        self.fc2 = nn.Linear(hidden_features, out_features)        self.drop = nn.Dropout(drop)    def forward(self, x):        x = self.fc1(x)        x = self.act(x)        x = self.drop(x)        x = self.fc2(x)        x = self.drop(x)        return xclass ConvRelPosEnc(nn.Layer):    """ Convolutional relative position encoding. """    def __init__(self, Ch, h, window):        """        Initialization.            Ch: Channels per head.            h: Number of heads.            window: Window size(s) in convolutional relative positional encoding. It can have two forms:                    1. An integer of window size, which assigns all attention heads with the same window size in ConvRelPosEnc.                    2. A dict mapping window size to #attention head splits (e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2})                       It will apply different window size to the attention head splits.        """        super().__init__()        if isinstance(window, int):            # Set the same window size for all attention heads.            window = {window: h}            self.window = window        elif isinstance(window, dict):            self.window = window        else:            raise ValueError()        self.conv_list = nn.LayerList()        self.head_splits = []        for cur_window, cur_head_split in window.items():            # Use dilation=1 at default.            dilation = 1            padding_size = (cur_window + (cur_window - 1)                            * (dilation - 1)) // 2            cur_conv = nn.Conv2D(cur_head_split*Ch, cur_head_split*Ch,                                 kernel_size=(cur_window, cur_window),                                 padding=(padding_size, padding_size),                                 dilation=(dilation, dilation),                                 groups=cur_head_split*Ch,                                 )            self.conv_list.append(cur_conv)            self.head_splits.append(cur_head_split)        self.channel_splits = [x*Ch for x in self.head_splits]    def forward(self, q, v, size):        B, h, N, Ch = q.shape        H, W = size        assert N == 1 + H * W        # Convolutional relative position encoding.        # Shape: [B, h, H*W, Ch].        q_img = q[:, :, 1:, :]        # Shape: [B, h, H*W, Ch].        v_img = v[:, :, 1:, :]        # Shape: [B, h, H*W, Ch] -> [B, h*Ch, H, W].        v_img = v_img.reshape((B, h, H, W, Ch))        v_img = v_img.transpose((0, 1, 4, 2, 3))        v_img = v_img.flatten(1, 2)        # v_img = rearrange(v_img, 'B h (H W) Ch -> B (h Ch) H W', H=H, W=W)        # Split according to channels.        v_img_list = paddle.split(v_img, self.channel_splits, axis=1)        conv_v_img_list = [conv(x)                           for conv, x in zip(self.conv_list, v_img_list)]        conv_v_img = paddle.concat(conv_v_img_list, axis=1)        # Shape: [B, h*Ch, H, W] -> [B, h, H*W, Ch].        conv_v_img = conv_v_img.reshape((B, h, Ch, H, W))        conv_v_img = conv_v_img.transpose((0, 1, 3, 4, 2))        conv_v_img = conv_v_img.flatten(2, 3)        # conv_v_img = rearrange(conv_v_img, 'B (h Ch) H W -> B h (H W) Ch', h=h)        EV_hat_img = q_img * conv_v_img        zero = paddle.zeros((B, h, 1, Ch), dtype=q.dtype)        # Shape: [B, h, N, Ch].        EV_hat = paddle.concat((zero, EV_hat_img), axis=2)        return EV_hatclass FactorAtt_ConvRelPosEnc(nn.Layer):    """ Factorized attention with convolutional relative position encoding class. """    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., shared_crpe=None):        super().__init__()        self.num_heads = num_heads        head_dim = dim // num_heads        self.scale = qk_scale or head_dim ** -0.5        self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)        # Note: attn_drop is actually not used.        self.attn_drop = nn.Dropout(attn_drop)        self.proj = nn.Linear(dim, dim)        self.proj_drop = nn.Dropout(proj_drop)        # Shared convolutional relative position encoding.        self.crpe = shared_crpe    def forward(self, x, size):        B, N, C = x.shape        # Generate Q, K, V.        # Shape: [3, B, h, N, Ch].        qkv = self.qkv(x).reshape(            (B, N, 3, self.num_heads, C // self.num_heads)        ).transpose((2, 0, 3, 1, 4))        # Shape: [B, h, N, Ch].        q, k, v = qkv[0], qkv[1], qkv[2]        # Factorized attention.        # Softmax on dim N.        k_softmax = nn.functional.softmax(k, axis=2)        # Shape: [B, h, Ch, Ch].        k_softmax_T_dot_v = paddle.matmul(k_softmax.transpose((0, 1, 3, 2)), v)        # k_softmax_T_dot_v = einsum('b h n k, b h n v -> b h k v', k_softmax, v)        # Shape: [B, h, N, Ch].        # factor_att = einsum('b h n k, b h k v -> b h n v', q, k_softmax_T_dot_v)        factor_att = paddle.matmul(q, k_softmax_T_dot_v)        # Convolutional relative position encoding.        # Shape: [B, h, N, Ch].        crpe = self.crpe(q, v, size=size)        # Merge and reshape.        x = self.scale * factor_att + crpe        # Shape: [B, h, N, Ch] -> [B, N, h, Ch] -> [B, N, C].        x = x.transpose((0, 2, 1, 3)).reshape((B, N, C))        # Output projection.        x = self.proj(x)        x = self.proj_drop(x)        # Shape: [B, N, C].        return xclass ConvPosEnc(nn.Layer):    """ Convolutional Position Encoding.         Note: This module is similar to the conditional position encoding in CPVT.    """    def __init__(self, dim, k=3):        super(ConvPosEnc, self).__init__()        self.proj = nn.Conv2D(dim, dim, k, 1, k//2, groups=dim)    def forward(self, x, size):        B, N, C = x.shape        H, W = size        assert N == 1 + H * W        # Extract CLS token and image tokens.        # Shape: [B, 1, C], [B, H*W, C].        cls_token, img_tokens = x[:, :1], x[:, 1:]        # Depthwise convolution.        feat = img_tokens.transpose((0, 2, 1)).reshape((B, C, H, W))        x = self.proj(feat) + feat        x = x.flatten(2).transpose((0, 2, 1))        # Combine with CLS token.        x = paddle.concat((cls_token, x), axis=1)        return xclass SerialBlock(nn.Layer):    """ Serial block class.        Note: In this implementation, each serial block only contains a conv-attention and a FFN (MLP) module. """    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, epsilon=1e-6,                 shared_cpe=None, shared_crpe=None):        super().__init__()        # Conv-Attention.        self.cpe = shared_cpe        self.norm1 = norm_layer(dim, epsilon=epsilon)        self.factoratt_crpe = FactorAtt_ConvRelPosEnc(            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,            shared_crpe=shared_crpe)        self.drop_path = DropPath(            drop_path) if drop_path > 0. else Identity()        # MLP.        self.norm2 = norm_layer(dim, epsilon=epsilon)        mlp_hidden_dim = int(dim * mlp_ratio)        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,                       act_layer=act_layer, drop=drop)    def forward(self, x, size):        # Conv-Attention.        # Apply convolutional position encoding.        x = self.cpe(x, size)        cur = self.norm1(x)        # Apply factorized attention and convolutional relative position encoding.        cur = self.factoratt_crpe(cur, size)        x = x + self.drop_path(cur)        # MLP.        cur = self.norm2(x)        cur = self.mlp(cur)        x = x + self.drop_path(cur)        return xclass ParallelBlock(nn.Layer):    """ Parallel block class. """    def __init__(self, dims, num_heads, mlp_ratios=[], qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, epsilon=1e-6,                 shared_cpes=None, shared_crpes=None):        super().__init__()        # Conv-Attention.        self.cpes = shared_cpes        self.norm12 = norm_layer(dims[1], epsilon=epsilon)        self.norm13 = norm_layer(dims[2], epsilon=epsilon)        self.norm14 = norm_layer(dims[3], epsilon=epsilon)        self.factoratt_crpe2 = FactorAtt_ConvRelPosEnc(            dims[1], num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,            shared_crpe=shared_crpes[1]        )        self.factoratt_crpe3 = FactorAtt_ConvRelPosEnc(            dims[2], num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,            shared_crpe=shared_crpes[2]        )        self.factoratt_crpe4 = FactorAtt_ConvRelPosEnc(            dims[3], num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,            shared_crpe=shared_crpes[3]        )        self.drop_path = DropPath(            drop_path) if drop_path > 0. else Identity()        # MLP.        self.norm22 = norm_layer(dims[1], epsilon=epsilon)        self.norm23 = norm_layer(dims[2], epsilon=epsilon)        self.norm24 = norm_layer(dims[3], epsilon=epsilon)        # In parallel block, we assume dimensions are the same and share the linear transformation.        assert dims[1] == dims[2] == dims[3]        assert mlp_ratios[1] == mlp_ratios[2] == mlp_ratios[3]        mlp_hidden_dim = int(dims[1] * mlp_ratios[1])        self.mlp2 = self.mlp3 = self.mlp4 = Mlp(            in_features=dims[1], hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)    def upsample(self, x, factor, size):        """ Feature map up-sampling. """        return self.interpolate(x, scale_factor=factor, size=size)    def downsample(self, x, factor, size):        """ Feature map down-sampling. """        return self.interpolate(x, scale_factor=1.0/factor, size=size)    def interpolate(self, x, scale_factor, size):        """ Feature map interpolation. """        B, N, C = x.shape        H, W = size        assert N == 1 + H * W        cls_token = x[:, :1, :]        img_tokens = x[:, 1:, :]        img_tokens = img_tokens.transpose((0, 2, 1)).reshape((B, C, H, W))        img_tokens = F.interpolate(            img_tokens, scale_factor=scale_factor, mode='bilinear')        img_tokens = img_tokens.reshape((B, C, -1)).transpose((0, 2, 1))        out = paddle.concat((cls_token, img_tokens), axis=1)        return out    def forward(self, x1, x2, x3, x4, sizes):        _, (H2, W2), (H3, W3), (H4, W4) = sizes        # Conv-Attention.        x2 = self.cpes[1](x2, size=(H2, W2))  # Note: x1 is ignored.        x3 = self.cpes[2](x3, size=(H3, W3))        x4 = self.cpes[3](x4, size=(H4, W4))        cur2 = self.norm12(x2)        cur3 = self.norm13(x3)        cur4 = self.norm14(x4)        cur2 = self.factoratt_crpe2(cur2, size=(H2, W2))        cur3 = self.factoratt_crpe3(cur3, size=(H3, W3))        cur4 = self.factoratt_crpe4(cur4, size=(H4, W4))        upsample3_2 = self.upsample(cur3, factor=2, size=(H3, W3))        upsample4_3 = self.upsample(cur4, factor=2, size=(H4, W4))        upsample4_2 = self.upsample(cur4, factor=4, size=(H4, W4))        downsample2_3 = self.downsample(cur2, factor=2, size=(H2, W2))        downsample3_4 = self.downsample(cur3, factor=2, size=(H3, W3))        downsample2_4 = self.downsample(cur2, factor=4, size=(H2, W2))        cur2 = cur2 + upsample3_2 + upsample4_2        cur3 = cur3 + upsample4_3 + downsample2_3        cur4 = cur4 + downsample3_4 + downsample2_4        x2 = x2 + self.drop_path(cur2)        x3 = x3 + self.drop_path(cur3)        x4 = x4 + self.drop_path(cur4)        # MLP.        cur2 = self.norm22(x2)        cur3 = self.norm23(x3)        cur4 = self.norm24(x4)        cur2 = self.mlp2(cur2)        cur3 = self.mlp3(cur3)        cur4 = self.mlp4(cur4)        x2 = x2 + self.drop_path(cur2)        x3 = x3 + self.drop_path(cur3)        x4 = x4 + self.drop_path(cur4)        return x1, x2, x3, x4class PatchEmbed(nn.Layer):    """ Image to Patch Embedding """    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):        super().__init__()        img_size = to_2tuple(img_size)        patch_size = to_2tuple(patch_size)        self.img_size = img_size        self.patch_size = patch_size        assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0,             f"img_size {img_size} should be divided by patch_size {patch_size}."        # Note: self.H, self.W and self.num_patches are not used        self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]        # since the image size may change on the fly.        self.num_patches = self.H * self.W        self.proj = nn.Conv2D(in_chans, embed_dim,                              kernel_size=patch_size, stride=patch_size)        self.norm = nn.LayerNorm(embed_dim)    def forward(self, x):        _, _, H, W = x.shape        out_H, out_W = H // self.patch_size[0], W // self.patch_size[1]        x = self.proj(x).flatten(2).transpose((0, 2, 1))        out = self.norm(x)        return out, (out_H, out_W)class CoaT(nn.Layer):    """ CoaT class. """    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dims=[0, 0, 0, 0],                 serial_depths=[0, 0, 0, 0], parallel_depth=0, num_heads=0,                 mlp_ratios=[0, 0, 0, 0], qkv_bias=True, qk_scale=None,                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,                 norm_layer=nn.LayerNorm, epsilon=1e-6,                 return_interm_layers=False, out_features=None,                 crpe_window={3: 2, 5: 3, 7: 3}, class_dim=1000,                 **kwargs):        super().__init__()        self.return_interm_layers = return_interm_layers        self.out_features = out_features        self.class_dim = class_dim        # Patch embeddings.        self.patch_embed1 = PatchEmbed(            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dims[0])        self.patch_embed2 = PatchEmbed(            img_size=img_size // 4, patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1])        self.patch_embed3 = PatchEmbed(            img_size=img_size // 8, patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2])        self.patch_embed4 = PatchEmbed(            img_size=img_size // 16, patch_size=2, in_chans=embed_dims[2], embed_dim=embed_dims[3])        # Class tokens.        self.cls_token1 = add_parameter(            self, paddle.zeros((1, 1, embed_dims[0])))        self.cls_token2 = add_parameter(            self, paddle.zeros((1, 1, embed_dims[1])))        self.cls_token3 = add_parameter(            self, paddle.zeros((1, 1, embed_dims[2])))        self.cls_token4 = add_parameter(            self, paddle.zeros((1, 1, embed_dims[3])))        # Convolutional position encodings.        self.cpe1 = ConvPosEnc(dim=embed_dims[0], k=3)        self.cpe2 = ConvPosEnc(dim=embed_dims[1], k=3)        self.cpe3 = ConvPosEnc(dim=embed_dims[2], k=3)        self.cpe4 = ConvPosEnc(dim=embed_dims[3], k=3)        # Convolutional relative position encodings.        self.crpe1 = ConvRelPosEnc(            Ch=embed_dims[0] // num_heads, h=num_heads, window=crpe_window)        self.crpe2 = ConvRelPosEnc(            Ch=embed_dims[1] // num_heads, h=num_heads, window=crpe_window)        self.crpe3 = ConvRelPosEnc(            Ch=embed_dims[2] // num_heads, h=num_heads, window=crpe_window)        self.crpe4 = ConvRelPosEnc(            Ch=embed_dims[3] // num_heads, h=num_heads, window=crpe_window)        # Disable stochastic depth.        dpr = drop_path_rate        assert dpr == 0.0        # Serial blocks 1.        self.serial_blocks1 = nn.LayerList([            SerialBlock(                dim=embed_dims[0], num_heads=num_heads, mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, epsilon=epsilon,                shared_cpe=self.cpe1, shared_crpe=self.crpe1            )            for _ in range(serial_depths[0])]        )        # Serial blocks 2.        self.serial_blocks2 = nn.LayerList([            SerialBlock(                dim=embed_dims[1], num_heads=num_heads, mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, epsilon=epsilon,                shared_cpe=self.cpe2, shared_crpe=self.crpe2            )            for _ in range(serial_depths[1])]        )        # Serial blocks 3.        self.serial_blocks3 = nn.LayerList([            SerialBlock(                dim=embed_dims[2], num_heads=num_heads, mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, epsilon=epsilon,                shared_cpe=self.cpe3, shared_crpe=self.crpe3            )            for _ in range(serial_depths[2])]        )        # Serial blocks 4.        self.serial_blocks4 = nn.LayerList([            SerialBlock(                dim=embed_dims[3], num_heads=num_heads, mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, epsilon=epsilon,                shared_cpe=self.cpe4, shared_crpe=self.crpe4            )            for _ in range(serial_depths[3])]        )        # Parallel blocks.        self.parallel_depth = parallel_depth        if self.parallel_depth > 0:            self.parallel_blocks = nn.LayerList([                ParallelBlock(                    dims=embed_dims, num_heads=num_heads, mlp_ratios=mlp_ratios, qkv_bias=qkv_bias, qk_scale=qk_scale,                    drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, epsilon=epsilon,                    shared_cpes=[self.cpe1, self.cpe2, self.cpe3, self.cpe4],                    shared_crpes=[self.crpe1, self.crpe2,                                  self.crpe3, self.crpe4]                )                for _ in range(parallel_depth)]            )        # Classification head(s).        if not self.return_interm_layers:            self.norm1 = norm_layer(embed_dims[0], epsilon=epsilon)            self.norm2 = norm_layer(embed_dims[1], epsilon=epsilon)            self.norm3 = norm_layer(embed_dims[2], epsilon=epsilon)            self.norm4 = norm_layer(embed_dims[3], epsilon=epsilon)            # CoaT series: Aggregate features of last three scales for classification.            if self.parallel_depth > 0:                assert embed_dims[1] == embed_dims[2] == embed_dims[3]                self.aggregate = nn.Conv1D(                    in_channels=3, out_channels=1, kernel_size=1)                self.head = nn.Linear(embed_dims[3], class_dim)            else:                # CoaT-Lite series: Use feature of last scale for classification.                self.head = nn.Linear(embed_dims[3], class_dim)        # Initialize weights.        trunc_normal_(self.cls_token1)        trunc_normal_(self.cls_token2)        trunc_normal_(self.cls_token3)        trunc_normal_(self.cls_token4)        self.apply(self._init_weights)    def _init_weights(self, m):        if isinstance(m, nn.Linear):            trunc_normal_(m.weight)            if isinstance(m, nn.Linear) and m.bias is not None:                zeros_(m.bias)        elif isinstance(m, nn.LayerNorm):            zeros_(m.bias)            ones_(m.weight)    def insert_cls(self, x, cls_token):        """ Insert CLS token. """        cls_tokens = cls_token.expand((x.shape[0], -1, -1))        x = paddle.concat((cls_tokens, x), axis=1)        return x    def remove_cls(self, x):        """ Remove CLS token. """        return x[:, 1:, :]    def forward_features(self, x0):        B = x0.shape[0]        # Serial blocks 1.        x1, (H1, W1) = self.patch_embed1(x0)        x1 = self.insert_cls(x1, self.cls_token1)        for blk in self.serial_blocks1:            x1 = blk(x1, size=(H1, W1))        x1_nocls = self.remove_cls(x1)        x1_nocls = x1_nocls.reshape(            (B, H1, W1, -1)        ).transpose((0, 3, 1, 2))        # Serial blocks 2.        x2, (H2, W2) = self.patch_embed2(x1_nocls)        x2 = self.insert_cls(x2, self.cls_token2)        for blk in self.serial_blocks2:            x2 = blk(x2, size=(H2, W2))        x2_nocls = self.remove_cls(x2)        x2_nocls = x2_nocls.reshape(            (B, H2, W2, -1)        ).transpose((0, 3, 1, 2))        # Serial blocks 3.        x3, (H3, W3) = self.patch_embed3(x2_nocls)        x3 = self.insert_cls(x3, self.cls_token3)        for blk in self.serial_blocks3:            x3 = blk(x3, size=(H3, W3))        x3_nocls = self.remove_cls(x3)        x3_nocls = x3_nocls.reshape(            (B, H3, W3, -1)        ).transpose((0, 3, 1, 2))        # Serial blocks 4.        x4, (H4, W4) = self.patch_embed4(x3_nocls)        x4 = self.insert_cls(x4, self.cls_token4)        for blk in self.serial_blocks4:            x4 = blk(x4, size=(H4, W4))        x4_nocls = self.remove_cls(x4)        x4_nocls = x4_nocls.reshape(            (B, H4, W4, -1)        ).transpose((0, 3, 1, 2))        # Only serial blocks: Early return.        if self.parallel_depth == 0:            # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2).            if self.return_interm_layers:                feat_out = {}                if 'x1_nocls' in self.out_features:                    feat_out['x1_nocls'] = x1_nocls                if 'x2_nocls' in self.out_features:                    feat_out['x2_nocls'] = x2_nocls                if 'x3_nocls' in self.out_features:                    feat_out['x3_nocls'] = x3_nocls                if 'x4_nocls' in self.out_features:                    feat_out['x4_nocls'] = x4_nocls                return feat_out            else:                           # Return features for classification.                x4 = self.norm4(x4)                x4_cls = x4[:, 0]                return x4_cls        # Parallel blocks.        for blk in self.parallel_blocks:            x1, x2, x3, x4 = blk(x1, x2, x3, x4, sizes=[                                 (H1, W1), (H2, W2), (H3, W3), (H4, W4)])        # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2).        if self.return_interm_layers:            feat_out = {}            if 'x1_nocls' in self.out_features:                x1_nocls = self.remove_cls(x1)                x1_nocls = x1_nocls.reshape(                    (B, H1, W1, -1)                ).transpose((0, 3, 1, 2))                feat_out['x1_nocls'] = x1_nocls            if 'x2_nocls' in self.out_features:                x2_nocls = self.remove_cls(x2)                x2_nocls = x2_nocls.reshape(                    (B, H2, W2, -1)                ).transpose((0, 3, 1, 2))                feat_out['x2_nocls'] = x2_nocls            if 'x3_nocls' in self.out_features:                x3_nocls = self.remove_cls(x3)                x3_nocls = x3_nocls.reshape(                    (B, H3, W3, -1)                ).transpose((0, 3, 1, 2))                feat_out['x3_nocls'] = x3_nocls            if 'x4_nocls' in self.out_features:                x4_nocls = self.remove_cls(x4)                x4_nocls = x4_nocls.reshape(                    (B, H4, W4, -1)                ).transpose((0, 3, 1, 2))                feat_out['x4_nocls'] = x4_nocls            return feat_out        else:            x2 = self.norm2(x2)            x3 = self.norm3(x3)            x4 = self.norm4(x4)            x2_cls = x2[:, :1]              # Shape: [B, 1, C].            x3_cls = x3[:, :1]            x4_cls = x4[:, :1]            # Shape: [B, 3, C].            merged_cls = paddle.concat((x2_cls, x3_cls, x4_cls), axis=1)            # Shape: [B, C].            merged_cls = self.aggregate(merged_cls).squeeze(axis=1)            return merged_cls    def forward(self, x):        # Return intermediate features (for down-stream tasks).        if self.return_interm_layers:            return self.forward_features(x)        else:                               # Return features for classification.            x = self.forward_features(x)            x = self.head(x)            return x
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:26: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations  def convert_to_list(value, n, name, dtype=np.int):

预设模型

In [2]

def coat_ti(pretrained=False, **kwargs):    model = CoaT(        patch_size=4, embed_dims=[152, 152, 152, 152],        serial_depths=[2, 2, 2, 2], parallel_depth=6,        num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs    )    if pretrained:        params = paddle.load('data/data86865/coat_tiny.pdparams')        model.set_dict(params)    return modeldef coat_m(pretrained=False, **kwargs):    model = CoaT(        patch_size=4, embed_dims=[152, 216, 216, 216],        serial_depths=[2, 2, 2, 2], parallel_depth=6,        num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs    )    if pretrained:        params = paddle.load('data/data86865/coat_mini.pdparams')        model.set_dict(params)    return modeldef coat_lite_ti(pretrained=False, **kwargs):    model = CoaT(        patch_size=4, embed_dims=[64, 128, 256, 320],        serial_depths=[2, 2, 2, 2], parallel_depth=0,        num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs    )    if pretrained:        params = paddle.load('data/data86865/coat_lite_tiny.pdparams')        model.set_dict(params)    return modeldef coat_lite_m(pretrained=False, **kwargs):    model = CoaT(        patch_size=4, embed_dims=[64, 128, 320, 512],        serial_depths=[2, 2, 2, 2], parallel_depth=0,        num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs    )    if pretrained:        params = paddle.load('data/data86865/coat_lite_mini.pdparams')        model.set_dict(params)    return modeldef coat_lite_s(pretrained=False, **kwargs):    model = CoaT(        patch_size=4, embed_dims=[64, 128, 320, 512],        serial_depths=[3, 4, 6, 3], parallel_depth=0,        num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs    )    if pretrained:        params = paddle.load('data/data86865/coat_lite_small.pdparams')        model.set_dict(params)    return model

模型测试

In [3]

model = coat_ti(True)random_input = paddle.randn((1, 3, 224, 224))out = model(random_input)print(out.shape)model.eval()out = model(random_input)print(out.shape)
[1, 1000][1, 1000]

精度验证

该模型的论文标称精度如下表:

Paddle2.0:浅析并实现 CoaT 模型 - 创想鸟

解压数据集

In [4]

!mkdir ~/data/ILSVRC2012!tar -xf ~/data/data68594/ILSVRC2012_img_val.tar -C ~/data/ILSVRC2012

模型验证

In [6]

import osimport cv2import numpy as npimport paddleimport paddle.vision.transforms as Tfrom PIL import Image# 构建数据集class ILSVRC2012(paddle.io.Dataset):    def __init__(self, root, label_list, transform, backend='pil'):        self.transform = transform        self.root = root        self.label_list = label_list        self.backend = backend        self.load_datas()    def load_datas(self):        self.imgs = []        self.labels = []        with open(self.label_list, 'r') as f:            for line in f:                img, label = line[:-1].split(' ')                self.imgs.append(os.path.join(self.root, img))                self.labels.append(int(label))    def __getitem__(self, idx):        label = self.labels[idx]        image = self.imgs[idx]        if self.backend=='cv2':            image = cv2.imread(image)        else:            image = Image.open(image).convert('RGB')        image = self.transform(image)        return image.astype('float32'), np.array(label).astype('int64')    def __len__(self):        return len(self.imgs)val_transforms = T.Compose([    T.Resize(248, interpolation='bicubic'),    T.CenterCrop(224),    T.ToTensor(),    T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])# 配置模型model = coat_lite_s(pretrained=True)model = paddle.Model(model)model.prepare(metrics=paddle.metric.Accuracy(topk=(1, 5)))# 配置数据集val_dataset = ILSVRC2012('data/ILSVRC2012', transform=val_transforms, label_list='data/data68594/val_list.txt', backend='pil')# 模型验证acc = model.evaluate(val_dataset, batch_size=256, num_workers=0, verbose=1)print(acc)
{'acc_top1': 0.81832, 'acc_top5': 0.95582}

总结

介绍了一种基于 Transformer 的图像分类器——CoaTCoaT 模型通过 Co-Scale 和 Conv-Attentional 机制设计为 Vision Transformer 提供了丰富的多尺度和上下文建模功能在性能表现方面优于 T2T-ViT、DeiT、PVT 等网络也使用 Paddle2.0 实现了 CoaT 模型,并加载官方预训练模型参数实现精度的对齐

以上就是Paddle2.0:浅析并实现 CoaT 模型的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/67194.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月12日 10:17:57
下一篇 2025年11月12日 10:43:25

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    300

发表回复

登录后才能评论
关注微信