贾跃亭出任FF联席CEO股价涨27% 力争FX产销达数万台

北京时间4月25日,faraday future宣布,ff的创始人贾跃亭已被任命为公司的联席首席执行官。根据小编的了解,贾跃亭将在保留现有职责的同时,增加财务、法务及供应链等职能的直接汇报线,与现任ff全球ceo matthias aydt先生共同履行首席执行官的职责。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

贾跃亭出任FF联席CEO股价涨27% 力争FX产销达数万台

贾跃亭在关键时刻被任命为FF全球联席CEO,标志着创始人模式的回归。当天,FF的股价大涨了27%。贾跃亭表示:“我将与Matthias一起采用‘创始人+职业经理人’的模式,与所有FF的同事一起力挽狂澜,重新建立信任与信心,坚定推行‘股东股民优先’的理念,让FF和FX快速走向成功,为股东和股民创造最大价值。”

据悉,此次调整后,公司的顶层管理组织和决策权力的分配也发生了根本性的改变。贾跃亭将在合法合规的基础上,建立严格的成本控制、现金流管理在内的财务管理体系和高效、低成本的供应链体系,助力公司快速实现战略目标,尽快实现经营性现金流和利润为正。

贾跃亭出任FF联席CEO股价涨27% 力争FX产销达数万台贾跃亭

此外,贾跃亭担任联席CEO后,董事会对他实施了一套变革性的“股东股民优先”股权激励方案,薪资和股权激励将直接与公司股价、市值及股民利益的KPI紧密挂钩。

贾跃亭表示:“当本次股权激励达成时,我将拿出一半的收益用于还债,履行我在中国法律下的债务和责任。还债回国是我必须完成的使命。虽然在美国法下我已经没有债务了,但从道义上,我也依然要尽责到底。另一半收益,我将继续投入到FF生态中,支持FF取得更大的成功。”

v0.dev v0.dev

Vercel推出的AI生成式UI工具,通过文本描述生成UI组件代码

v0.dev 261 查看详情 v0.dev

贾跃亭担任联席CEO,标志着公司进入了“FF创始人+职业经理人”时代。他表示,他将带领公司实现“三大目标”。

第一大目标是在2025年底实现FX首辆车下线,力争在FX量产后的两年内实现数万台的产销量。贾跃亭表示,公司将在2025年底实现FX首辆车下线,并在量产后的两年内争取达到数万台的销量。第二大目标是在财务上短时间内实现毛利率转正,经营现金流为正,早日实现整体盈利。第三大目标是资本目标,持续提升资本市场信心,启动全球范围内的AI及AIEV技术与企业并购计划,构建全球AI汽车生态。

贾跃亭出任FF联席CEO股价涨27% 力争FX产销达数万台

如何实现这三大战略目标?贾跃亭表示,他将带领公司推出“十大变革”组合拳,通过理念、文化、价值观变革;战略变革;产品和技术变革;工业化与交付体系变革;用户生态变革;政府事务和战略伙伴关系变革;公司管理体系变革;财务体系变革;组织与激励变革以及资本及股东股民价值变革,全面重整FF和FX。

贾跃亭说:“我是那个曾经被推下悬崖的‘野子’;也是那个在废墟中点起火光,带着梦想逆风归来的野子。今天我终于打破枷锁,冲破五指山,让我有机会带领公司冲上云霄,为股东和股民创造最大价值。”他继续说道:“I’m back, the Futurism is back, Back to Win!”

以上就是贾跃亭出任FF联席CEO股价涨27% 力争FX产销达数万台的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/756172.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月25日 22:51:11
下一篇 2025年11月25日 22:51:45

相关推荐

  • 列举Python中常见的数据结构及其特点。

    Python中最常见的数据结构包括列表、元组、字典和集合。列表是可变的有序序列,适合频繁修改的场景;元组是不可变的有序序列,用于固定数据;字典是键值对的无序集合,基于哈希表实现,查找效率高;集合是无序且不重复的元素集合,常用于去重和集合运算。此外,collections模块提供了deque、Coun…

    好文分享 2025年12月14日
    000
  • 使用 Scikit-learn 构建基础的机器学习模型

    使用Scikit-learn构建模型需遵循数据预处理、模型选择、训练、预测与评估的流程。首先用pandas加载数据并进行清洗,通过StandardScaler或OneHotEncoder处理数值和分类特征,利用ColumnTransformer和Pipeline整合预处理与模型训练,防止数据泄露。选…

    2025年12月14日
    000
  • 如何进行Python程序的调试(pdb)?

    答案:pdb提供交互式调试环境,支持断点、变量检查与修改、条件断点及事后调试,相比print更高效精准,适用于复杂问题定位。 Python程序的调试,尤其是使用内置的 pdb 模块,核心在于提供了一个交互式的环境,让开发者可以逐行执行代码、检查变量状态、设置断点,从而深入理解程序行为并定位问题。它就…

    2025年12月14日
    000
  • 如何理解Python的生成器和迭代器?

    生成器和迭代器通过惰性求值实现内存高效的数据处理,适用于大文件、无限序列和数据管道。迭代器需实现__iter__和__next__方法,生成器则用yield简化创建过程,生成器函数适合复杂逻辑,生成器表达式适合简洁转换,二者均支持按需计算,避免内存溢出,提升性能与代码可读性。 Python中的生成器…

    2025年12月14日
    000
  • 优化FastAPI在Google Cloud上的错误报告:消除冗余异常

    在使用Google Cloud Run部署FastAPI应用时,Google Cloud Error Reporting常显示Uvicorn、AnyIO等框架产生的冗余异常,掩盖了实际业务错误。本文提供了一种解决方案,通过自定义FastAPI异常处理器并结合raise exc from None,有…

    2025年12月14日
    000
  • 字典(Dict)的底层实现原理是什么?

    字典的底层基于哈希表,通过哈希函数将键映射到数组索引实现O(1)平均时间复杂度的查找。当不同键映射到同一位置时发生哈希冲突,主要采用开放寻址法解决,如CPython 3.6+使用的混合策略,结合紧凑entries数组与稀疏索引数组提升缓存效率。为维持性能,字典在负载因子过高时触发扩容,即重建更大数组…

    2025年12月14日
    000
  • 解释一下Python的命名空间和作用域。

    命名空间是Python中名字与对象的映射,作用域是名字可访问的区域,二者共同构成标识符管理机制。Python有内置、全局、局部三类命名空间:内置命名空间在解释器启动时创建,包含内置函数,持续到程序结束;全局命名空间随模块加载而创建,保存模块级变量,生命周期与模块一致;局部命名空间在函数调用时创建,存…

    2025年12月14日
    000
  • 如何理解Python中的并发与并行?

    并发指一段时间内处理多个任务,并行指同一时刻执行多个任务。Python因GIL限制,多线程无法实现真正并行,但可通过多进程、异步IO等方式实现并发与并行。GIL导致多线程在CPU密集型任务中性能受限,但在IO密集型任务中仍有效。多线程适用于IO密集型场景,多进程可绕过GIL实现CPU密集型任务的并行…

    2025年12月14日
    000
  • 如何理解Python的鸭子类型?

    鸭子类型的核心是“行为决定类型”,Python中只要对象具备所需方法即可被调用,无需继承特定类。例如take_flight(entity)函数只关心entity.fly()是否存在,Bird、Airplane等只要有fly方法就能正常运行,提升了代码灵活性与可扩展性。它减少继承依赖,促进松耦合设计,…

    2025年12月14日
    000
  • Windows下安装字体的正确方法:使用AddFontResource API

    本文旨在帮助开发者解决在Windows系统中安装字体时遇到的权限问题。传统的复制字体文件到C:WindowsFonts目录的方法并不适用,因为该目录并非真实的物理目录。本文将介绍使用AddFontResource API来实现字体的安装,并提供代码示例和注意事项,确保字体能够正确安装并被应用程序使用…

    2025年12月14日
    000
  • 如何用Python实现一个命令行工具?

    使用Python的argparse模块可高效构建命令行工具,如实现文件复制与行数统计功能,通过子命令和参数解析提升用户体验;结合Click、Typer等第三方库可进一步简化开发,增强功能与可读性。 Python在构建命令行工具方面有着得天独厚的优势,无论是内置的 argparse 模块,还是像 Cl…

    2025年12月14日
    000
  • functools 模块中的 lru_cache 和 wraps

    lru_cache通过缓存函数结果提升性能,wraps保留被装饰函数的元信息以确保代码可维护性。两者在优化与调试中互补使用,适用于递归、I/O操作等重复计算场景,且需合理配置maxsize和typed参数以平衡性能与内存开销。 functools 模块中的 lru_cache 和 wraps 是Py…

    2025年12月14日
    000
  • 什么是Python的GIL(全局解释器锁)?它对多线程有何影响?

    GIL是CPython解释器的全局锁,确保同一时间仅一个线程执行字节码,源于引用计数内存管理需线程安全。它使CPU密集型多线程性能受限,因多核无法并行执行;但I/O密集型任务可在等待时释放GIL,实现并发。绕过GIL的方法包括:使用multiprocessing实现多进程并行,采用asyncio处理…

    2025年12月14日
    000
  • 如何使用虚拟环境(Virtualenv)?

    虚拟环境能解决依赖冲突,通过为每个Python项目创建独立环境,实现库和解释器的隔离,避免版本冲突,确保项目间互不干扰。 虚拟环境(Virtualenv)是Python开发中一个非常基础但极其重要的工具,它允许你为每个项目创建独立的Python运行环境,从而有效地隔离不同项目所需的库和依赖,彻底解决…

    2025年12月14日
    000
  • 使用 FastAPI 上传图片并传递给 YOLOv8 模型

    本文档旨在指导开发者如何使用 FastAPI 框架构建一个 REST API 接口,该接口能够接收图片上传,并将图片数据传递给 YOLOv8 模型进行处理。我们将重点介绍如何处理上传的图片文件,并将其转换为 YOLOv8 模型能够接受的格式,解决直接传递字节数据导致的 “Unsuppor…

    2025年12月14日
    000
  • 将十六进制文本转换为指定 JSON 格式的教程

    本文档旨在指导开发者如何使用 Python 将包含十六进制数据的文本文件转换为特定格式的 JSON 文件。该过程涉及读取文本文件,解析十六进制数据,将其转换为十进制,并最终以指定的 JSON 结构输出。通过本文,你将学习如何使用正则表达式提取数据,以及如何构建符合要求的 JSON 结构。 1. 理解…

    2025年12月14日
    000
  • 如何处理Python中的异常?常用的异常类有哪些?

    Python异常处理通过try…except…else…finally结构捕获和处理错误,保证程序健壮性;可自定义异常类继承Exception,并在抛出时提供详细信息;应优先使用内置异常类型如ValueError、TypeError等,避免宽泛捕获,区分业务与技术…

    2025年12月14日
    000
  • 如何使用itertools模块进行高效的循环迭代?

    itertools模块通过惰性求值和C级优化提供高效迭代,其核心函数如count、cycle、chain、groupby、product等,可实现内存友好且高性能的循环操作,适用于处理大数据、组合排列及序列连接等场景。 说起Python里高效的循环迭代, itertools 模块绝对是绕不开的话题。…

    2025年12月14日
    000
  • 如何使用collections模块中的常用数据结构(defaultdict, Counter, deque)?

    defaultdict、Counter和deque是Python collections模块中高效处理数据分组、计数和双端操作的工具。defaultdict通过自动初始化缺失键提升代码简洁性与效率;Counter专用于可哈希对象的频率统计,提供most_common等便捷方法,适合大数据计数但需注意…

    2025年12月14日
    000
  • 什么是虚拟环境?为何要用 virtualenv 或 venv?

    虚拟环境通过为每个Python项目创建独立的依赖空间,解决了不同项目间库版本冲突的问题。它隔离了Python解释器和第三方库,确保项目依赖互不干扰,避免全局环境被“污染”。使用venv(Python 3.3+内置)或virtualenv可创建虚拟环境,激活后所有包安装仅限该环境。常见实践包括:将虚拟…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信