Meta开发System 2蒸馏技术,Llama 2对话模型任务准确率接近100%

研究者表示,如果 Sytem 2 蒸馏可以成为未来持续学习 AI 系统的重要特征,则可以进一步提升 System 2 表现不那么好的推理任务的性能。

谈到大语言模型(llm)的策略,一般来说有两种,一种是即时的 system 1(快速反应),另一种是 system 2(慢速思考)。

其中 System 2 推理倾向于深思熟虑的思维,生成中间思维允许模型(或人类)进行推理和规划,以便成功完成任务或响应指令。在 System 2 推理中,需要付出努力的心理活动,尤其是在 System 1(更自动化思维)可能出错的情况下。

因此,System 1 被定义为 Transformer 的应用,可以根据输入直接生成响应,而无需生成中间 token。Sytem 2 被定义为生成中间 token 的任何方法,包括执行搜索或多次提示然后最终生成响应的方法。

业界已经提出了一系列相关的 System 2 技术,包括思维链、思维树、思维图、分支解决合并、System 2 Attention、Rephrase and Respond (RaR) 等。得益于这种明确的推理,许多方法都显示出更准确的结果, 但这样做通常会带来更高的推理成本和响应延迟。因此,许多此类方法未在生产系统中使用,而大多使用了 System 1。

对于人类来说, 学习将技能从深思熟虑(System 2)转移到自动(System  1)的过程在心理学中被称为自动性,以及程序记忆的使用。例如,第一次开车上班时,人们通常会花费有意识的努力来计划和做出到达目的地的决定。而在驾驶员重复这条路线后,驾驶过程就会「编译」到潜意识中。同样,网球等运动可以成为「第二天性」。

在本文中,来自 Meta  FAIR 的研究者探索了一种类似的 AI 模型方法。该方法在给定一组未标记示例的情况下以无监督的方式执行编译,被称为 System 2 蒸馏。对于每个示例,他们应用给定的 System 2 方法,然后以无监督的方式测量预测的质量。

例如对于具有唯一答案的任务,研究者应用自洽性(self-consistency)并多次进行采样。对于 System 2 足够一致的示例,他们假设应该蒸馏此结果,并将其添加到蒸馏池中。然后对 System 1 进行微调,以匹配 System  2 方法对收集的示例池的预测,但不生成中间步骤。下图 1 说明了将 System  2 蒸馏到 System 1 的整体过程。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

Meta开发System 2蒸馏技术,Llama 2对话模型任务准确率接近100%

研究者对 4 种不同的 System 2 LLM 方法和 5 种不同的任务进行了实验。结果发现,本文方法可以在各种设置中将 System 2 推理蒸馏回 System 1 中,有时甚至比 System 2 教师的结果更好。此外,这些预测现在只需花费计算成本的一小部分即可产生。

例如,他们发现成功的蒸馏适用于处理有偏见的意见或不相关信息的任务(System 2 Attention)、澄清和改进某些推理任务中的响应(RaR)以及 LLM 的细粒度评估(分支 – 解决 – 合并)。

不过,并非所有的任务都可以蒸馏到 System 1 中,尤其是需要思维链的复杂数学推理任务。这也反映在人类身上,如果没有深思熟虑的 System 2 推理,人类就无法执行某些任务。

Meta开发System 2蒸馏技术,Llama 2对话模型任务准确率接近100%

论文地址:https://arxiv.org/pdf/2407.06023v2

将 System 2 蒸馏回 System 1

设置:System 1 和 System 2 模型

给定一个输入 x,研究者考虑设置一个单一模型,在他们的例子中是一个大语言模型 (LLM),它能够实现两种响应模式:

System 1:直接生成输出 y。这类方法通过转发(forwarding)底层自回归神经网络 (Transformer) 的各层来生成输出标记来完成。

System 2。这类方法使用底层 Transformer 在生成最终响应 token 之前生成任何类型的中间输出标记 z,可能包括多次调用(提示)。

从形式上,研究者将 System 2 模型 S_II 视为一个函数,它接受 LLM p_θ 和输入 x,并且可以重复调用 LLM 以使用特定算法生成中间标记 z,然后返回输出 y:

Meta开发System 2蒸馏技术,Llama 2对话模型任务准确率接近100%

System 2 方法可能涉及多个提示、分支、迭代和搜索,同时使用 LLM 生成中间结果以供进一步处理。相比之下,System 1 模型仅考虑原始输入 x 并直接调用 LLM pθ 来生成输出 y:

Meta开发System 2蒸馏技术,Llama 2对话模型任务准确率接近100%

方法:System 2 蒸馏

本文方法的第一步是使用 System 2 模型对未标记的输入 X 生成响应:

Meta开发System 2蒸馏技术,Llama 2对话模型任务准确率接近100%

然后,这些响应 y^i_S_II 可直接用作 System 2 蒸馏目标,以微调 System 1 模型。但是,它们容易受到噪声的影响:其中一些响应可能是高质量的,而另一些可能是低质量或不正确的。对于涉及简短响应(通常具有唯一正确(但未知)的答案)的简短问答和推理任务,研究者考虑采用无监督管理步骤来尝试提高训练数据质量。他们考虑了以下两种依赖于自洽性标准的变体:

新CG儿 新CG儿

数字视觉分享平台 | AE模板_视频素材

新CG儿 412 查看详情 新CG儿

输出的自洽性:对 S_II (x^i ; p_θ) 进行总共 N 次采样,并接受多数投票响应;如果没有多数投票获胜者,则丢弃该示例。

输入扰动下的自洽性:以输出不变的方式扰动输入 x^i,例如改变提示中多项选择题的顺序,并计算每次扰动的 S_II;如果输出不一致,则丢弃该示例。

之后研究者得到了合成数据集 (X_S_II , Y_S_II),其中 X_S_II 是 X 的一个过滤子集,目标是 Y_S_II。最后一步是使用这个蒸馏出来的训练集对参数为 p_θ 的 LLM 进行监督微调。研究者通常从当前状态 p_θ 初始化此模型,然后继续使用新数据集进行训练。微调后,他们得到一个 LLM Meta开发System 2蒸馏技术,Llama 2对话模型任务准确率接近100%,这是一个 System 1 模型,预计可提供与评估的 System  2 模型类似的输出和性能提升。

实验结果

训练和评估设置

研究者使用 Llama-2-70B-chat 作为所有实验的基础模型。他们需要一个具有足够能力的基础模型,使其能够像 System 2 模型一样高效运行,同时还具有可以微调的开放权重,因此做出了此选择。

同时,研究者考虑了几种 System 2 方法,包括 System 2 Attention、 RaR、分支解决合并(Branch-Solve-Merge)和思维链, 并重点关注每种方法都显示出强大性能的任务。

对于 System 1,研究者使用指令调整后的基础模型作为标准基线进行零样本推理。他们报告每个任务的任务特定指标,以及「#Tokens」指标,后者衡量评估集上每个输入生成的平均 token 数量。System 2 方法则包括中间 token 生成以及最终输出 token 生成。

Rephrase and Respond 蒸馏

RaR 是一种 System 2 方法,它首先提示语言模型以进一步阐述的方式来复述原始问题,然后基于复述的问题生成响应,目的是提供更优的输出。

对于蒸馏数据,研究者使用输出的自洽性为 RaR 构建 System 2 蒸馏数据集。对于每个输入,他们对最后一个字母( last letter)任务进行了八次采样迭代,并同样对硬币翻转(coin flip)任务的每个阶段进行八次采样迭代,然后用多数投票来确定最终输出。

首先来看最后一个字母连接(Last letter Concatenation)任务。此任务侧重于符号推理,要求模型连接给定单词的最后一个字母。整体结果如下表 1 所示。

基线 System 1 模型 (Llama-2-70B-chat) 的准确率达到 30.0%,低于 System 2 的 1-Step 和 2-Step RaR 方法(分别为 39.5% 和 44.5%)。通过本文无监督技术将 2-Step RaR 方法蒸馏回 System 1 Llama-2-70B-chat 模型,则实现了 98.0% 的惊人准确率。

与零样本聊天模型相比,模型可以有效地从这些训练数据中学习如何解决任务。RaR 的蒸馏有效地继承了 System 2 和 System 1 的优势,既保留了 System 2 的准确率优势,而其推理成本与 System 1 相当。

Meta开发System 2蒸馏技术,Llama 2对话模型任务准确率接近100%

再来看硬币翻转推理任务。这种符号推理任务经常在研究中进行测试,它涉及确定硬币的最终面(正面或反面),从已知的初始位置开始,经过一系列用自然语言描述的翻转,例如「硬币正面朝上」。

整体结果见上表 1。Llama-2-70B-chat(零样板)在此任务上的成功率为 56.1%,而 1-Step 和 2-Step RaR 的成功率分别为 58.5% 和 77.2%。因此,使用 2-Step 方法获得了巨大改进。通过本文无监督技术将 2-Step RaR 蒸馏回 System 1 Llama-2-70B-chat 可以获得 75.69% 的结果。

因此,蒸馏的 System 2 模型提供的性能与 System 2(2 Step RaR)相当,但不需要使用 2 个提示执行 LLM 程序。

System 2 Attention 蒸馏

Weston 和 Sukhbaatar (2023) 提出了 System 2 Attention (S2A),这种方法有助于减少模型的推理陷阱,例如依赖输入中的偏见信息或关注不相关的上下文。

研究者验证了将 S2A 提炼到 System 1 中的可行性,特别是 SycophancyEval 问答任务,该任务包含已知会损害 LLM 性能的输入中的偏见信息。

结果如下表 2 所示,报告了 3 个随机种子的平均准确率。正如预期,基线(System1)LLM 在有偏见部分的准确率较低,容易受到有偏见输入的影响。S2A 显著提高了有偏见输入的性能。System 2 蒸馏表现出与 System 2 方法类似的强大性能。

Meta开发System 2蒸馏技术,Llama 2对话模型任务准确率接近100%

更多实验结果请参阅原论文。

以上就是Meta开发System 2蒸馏技术,Llama 2对话模型任务准确率接近100%的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/792409.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月26日 14:47:52
下一篇 2025年11月26日 14:48:21

相关推荐

  • 怎样用免费工具美化PPT_免费美化PPT的实用方法分享

    利用KIMI智能助手可免费将PPT美化为科技感风格,但需核对文字准确性;2. 天工AI擅长优化内容结构,提升逻辑性,适合高质量内容需求;3. SlidesAI支持语音输入与自动排版,操作便捷,利于紧急场景;4. Prezo提供多种模板,自动生成图文并茂幻灯片,适合学生与初创团队。 如果您有一份内容完…

    2025年12月6日 软件教程
    000
  • Pages怎么协作编辑同一文档 Pages多人实时协作的流程

    首先启用Pages共享功能,点击右上角共享按钮并选择“添加协作者”,设置为可编辑并生成链接;接着复制链接通过邮件或社交软件发送给成员,确保其使用Apple ID登录iCloud后即可加入编辑;也可直接在共享菜单中输入邮箱地址定向邀请,设定编辑权限后发送;最后在共享面板中管理协作者权限,查看实时在线状…

    2025年12月6日 软件教程
    100
  • REDMI K90系列正式发布,售价2599元起!

    10月23日,redmi k90系列正式亮相,推出redmi k90与redmi k90 pro max两款新机。其中,redmi k90搭载骁龙8至尊版处理器、7100mah大电池及100w有线快充等多项旗舰配置,起售价为2599元,官方称其为k系列迄今为止最完整的标准版本。 图源:REDMI红米…

    2025年12月6日 行业动态
    200
  • Linux中如何安装Nginx服务_Linux安装Nginx服务的完整指南

    首先更新系统软件包,然后通过对应包管理器安装Nginx,启动并启用服务,开放防火墙端口,最后验证欢迎页显示以确认安装成功。 在Linux系统中安装Nginx服务是搭建Web服务器的第一步。Nginx以高性能、低资源消耗和良好的并发处理能力著称,广泛用于静态内容服务、反向代理和负载均衡。以下是在主流L…

    2025年12月6日 运维
    000
  • Linux journalctl与systemctl status结合分析

    先看 systemctl status 确认服务状态,再用 journalctl 查看详细日志。例如 nginx 启动失败时,systemctl status 显示 Active: failed,journalctl -u nginx 发现端口 80 被占用,结合两者可快速定位问题根源。 在 Lin…

    2025年12月6日 运维
    100
  • 华为新机发布计划曝光:Pura 90系列或明年4月登场

    近日,有数码博主透露了华为2025年至2026年的新品规划,其中pura 90系列预计在2026年4月发布,有望成为华为新一代影像旗舰。根据路线图,华为将在2025年底至2026年陆续推出mate 80系列、折叠屏新机mate x7系列以及nova 15系列,而pura 90系列则将成为2026年上…

    2025年12月6日 行业动态
    100
  • Linux如何优化系统性能_Linux系统性能优化的实用方法

    优化Linux性能需先监控资源使用,通过top、vmstat等命令分析负载,再调整内核参数如TCP优化与内存交换,结合关闭无用服务、选用合适文件系统与I/O调度器,持续按需调优以提升系统效率。 Linux系统性能优化的核心在于合理配置资源、监控系统状态并及时调整瓶颈环节。通过一系列实用手段,可以显著…

    2025年12月6日 运维
    000
  • 曝小米17 Air正在筹备 超薄机身+2亿像素+eSIM技术?

    近日,手机行业再度掀起超薄机型热潮,三星与苹果已相继推出s25 edge与iphone air等轻薄旗舰,引发市场高度关注。在此趋势下,多家国产厂商被曝正积极布局相关技术,加速抢占这一细分赛道。据业内人士消息,小米的超薄旗舰机型小米17 air已进入筹备阶段。 小米17 Pro 爆料显示,小米正在评…

    2025年12月6日 行业动态
    000
  • 荣耀手表5Pro 10月23日正式开启首销国补优惠价1359.2元起售

    荣耀手表5pro自9月25日开启全渠道预售以来,市场热度持续攀升,上市初期便迎来抢购热潮,一度出现全线售罄、供不应求的局面。10月23日,荣耀手表5pro正式迎来首销,提供蓝牙版与esim版两种选择。其中,蓝牙版本的攀登者(橙色)、开拓者(黑色)和远航者(灰色)首销期间享受国补优惠价,到手价为135…

    2025年12月6日 行业动态
    000
  • 环境搭建docker环境下如何快速部署mysql集群

    使用Docker Compose部署MySQL主从集群,通过配置文件设置server-id和binlog,编写docker-compose.yml定义主从服务并组网,启动后创建复制用户并配置主从连接,最后验证数据同步是否正常。 在Docker环境下快速部署MySQL集群,关键在于合理使用Docker…

    2025年12月6日 数据库
    000
  • Xbox删忍龙美女角色 斯宾塞致敬板垣伴信被喷太虚伪

    近日,海外游戏推主@HaileyEira公开发表言论,批评Xbox负责人菲尔·斯宾塞不配向已故的《死或生》与《忍者龙剑传》系列之父板垣伴信致敬。她指出,Xbox并未真正尊重这位传奇制作人的创作遗产,反而在宣传相关作品时对内容进行了审查和删减。 所涉游戏为年初推出的《忍者龙剑传2:黑之章》,该作采用虚…

    2025年12月6日 游戏教程
    000
  • 如何在mysql中分析索引未命中问题

    答案是通过EXPLAIN分析执行计划,检查索引使用情况,优化WHERE条件写法,避免索引失效,结合慢查询日志定位问题SQL,并根据查询模式合理设计索引。 当 MySQL 查询性能下降,很可能是索引未命中导致的。要分析这类问题,核心是理解查询执行计划、检查索引设计是否合理,并结合实际数据访问模式进行优…

    2025年12月6日 数据库
    000
  • VSCode入门:基础配置与插件推荐

    刚用VSCode,别急着装一堆东西。先把基础设好,再按需求加插件,效率高还不卡。核心就三步:界面顺手、主题舒服、功能够用。 设置中文和常用界面 打开软件,左边活动栏有五个图标,点最下面那个“扩展”。搜索“Chinese”,装上官方出的“Chinese (Simplified) Language Pa…

    2025年12月6日 开发工具
    000
  • php查询代码怎么写_php数据库查询语句编写技巧与实例

    在PHP中进行数据库查询,最常用的方式是使用MySQLi或PDO扩展连接MySQL数据库。下面介绍基本的查询代码写法、编写技巧以及实用示例,帮助你高效安全地操作数据库。 1. 使用MySQLi进行查询(面向对象方式) 这是较为推荐的方式,适合大多数中小型项目。 // 创建连接$host = ‘loc…

    2025年12月6日 后端开发
    000
  • 重现iPhone X颠覆性时刻!苹果2027年跳过19命名iPhone 20

    10月23日,有消息称,苹果或将再次调整iPhone的发布节奏,考虑跳过“iPhone 19”,并于2027年直接推出“iPhone 20”系列。 此举据传是为了庆祝初代iPhone发布二十周年,同时开启新一轮的设计革新,目标是复刻2017年iPhone X带来的划时代变革。 据悉,苹果或将告别长期…

    2025年12月6日 手机教程
    000
  • 如何在mysql中使用索引提高查询效率

    合理创建索引可显著提升MySQL查询效率,应优先为WHERE、JOIN、ORDER BY等高频字段建立B-Tree复合索引,如CREATE INDEX idx_status_created ON users(status, created_at, id),并遵循最左前缀原则;避免在索引列使用函数或前…

    2025年12月6日 数据库
    000
  • Linux命令行中free命令的使用方法

    free命令用于查看Linux内存使用情况,包括总内存、已用、空闲、共享、缓存及可用内存;使用-h可读格式显示,-s周期刷新,-c限制次数,-t显示总计,帮助快速评估系统内存状态。 free命令用于显示Linux系统中内存和交换空间的使用情况,包括物理内存、已用内存、空闲内存以及缓存和缓冲区的占用情…

    2025年12月6日 运维
    000
  • 在 Java 中使用 Argparse4j 接收 Duration 类型参数

    本文介绍了如何使用 `net.sourceforge.argparse4j` 库在 Java 命令行程序中接收 `java.time.Duration` 类型的参数。由于 `Duration` 不是原始数据类型,需要通过自定义类型转换器或工厂方法来处理。文章提供了两种实现方案,分别基于 `value…

    2025年12月6日 java
    000
  • Linux命令行中tail -f命令的详细应用

    tail -f 用于实时监控文件新增内容,常用于日志查看;支持 -F 处理轮转、-n 指定行数、结合 grep 过滤,可监控多文件,需注意权限与资源释放。 tail -f 是 Linux 中一个非常实用的命令,主要用于实时查看文件的新增内容,尤其在监控日志文件时极为常见。它会持续输出文件末尾新增的数…

    2025年12月6日 运维
    000
  • Phaser 3游戏画布响应式布局:实现高度适配与宽度裁剪

    本文深入探讨phaser 3游戏画布在特定响应式场景下的布局策略,尤其是在需要画布高度适配父容器并允许左右内容裁剪时。通过结合phaser的scalemanager中的`height_controls_width`模式与精细的css布局,本教程将展示如何实现一个既能保持游戏画面比例,又能完美融入不同…

    2025年12月6日 web前端
    000

发表回复

登录后才能评论
关注微信