单个4090可推理,2000亿稀疏大模型「天工MoE」开源

在大模型浪潮中,训练和部署最先进的密集集llm在计算需求和相关成本上带来了巨大挑战,尤其是在数百亿或数千亿参数的规模上。为了应对这些挑战,稀疏模型,如专家混合模型(moe),已经变得越来越重要。 这些模型通过将计算分配给各种专门的子模型或“专家”,提供了一种经济上可行的替代方案,有可能以极低的资源需求达到甚至超过密集集模型的性能。

6 月 3 日,开源大模型领域又传来重要消息:昆仑万维宣布开源 2 千亿稀疏大模型 Skywork-MoE,在保持性能强劲的同时,大幅降低了推理成本。

基于此前昆仑万维开源的Skywork-13B模型中间checkpoint扩展而来,是首个完整将MoE Upcycling技术应用并落地的开源千亿MoE大模型,也是首个支持用单台4090服务器推理的开源千亿MoE大模型。

让大模型社区更为关注的是,Skywork-MoE 的模型权重、技术报告完全开源,免费商用,无需申请。

模型权重下载地址:

○ https://huggingface.co/Skywork/Skywork-MoE-base

○ https://huggingface.co/Skywork/Skywork-MoE-Base-FP8

模型开源仓库:https://github.com/SkyworkAI/Skywork-MoE

模型技术报告:https://github.com/SkyworkAI/Skywork-MoE/blob/main/skywork-moe-tech-report.pdf

模型推理代码:(支持 8×4090 服务器上 8 bit 量化加载推理) https://github.com/SkyworkAI/vllm

Skywork-MoE 是目前能在 8×4090 服务器上推理的最大的开源 MoE 模型。8×4090 服务器一共有 192GB 的 GPU 显存,在 FP8 量化下(weight 占用 146GB),使用昆仑万维团队首创的非均匀 Tensor Parallel 并行推理方式,Skywork-MoE 可以在合适的 batch size 内达到 2200 tokens/s 的吞吐。

完整相关的推理框架代码和安装环境见:https://github.com/SkyworkAI/Skywork-MoE

Skywork-MoE 介绍

本次开源的 Skywork-MoE 模型隶属于天工 3.0 的研发模型系列,是其中的中档大小模型(Skywork-MoE-Medium),模型的总参数量为 146B,激活参数量 22B,共有 16 个 Expert,每个 Expert 大小为 13B,每次激活其中的 2 个 Expert。

据了解,天工 3.0 还训练了 75B (Skywork-MoE-Small) 和 400B (Skywork-MoE-Large)两档 MoE 模型,并不在此次开源之列。

昆仑万维基于目前各大主流模型评测榜单评测了 Skywork-MoE,在相同的激活参数量 20B(推理计算量)下,Skywork-MoE 能力在行业前列,接近 70B 的 Dense 模型。使得模型的推理成本有近 3 倍的下降。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

单个4090可推理,2000亿稀疏大模型「天工MoE」开源

值得注意的是, Skywork-MoE 的总参数大小比 DeepSeekV2 的总参数大小要小 1/3,用更小的参数规模做到了相近的能力。

技术创新

为了解决 MoE 模型训练困难,泛化性能差的问题,Skywork-MoE 设计了两种训练优化算法:

INFINITE ALBUM INFINITE ALBUM

面向游戏玩家的生成式AI音乐

INFINITE ALBUM 144 查看详情 INFINITE ALBUM

Gating Logits 归一化操作

Skywork-MoE 在 Gating Layer 的 token 分发逻辑处新增了一个 normalization 操作,使得 Gating Layer 的参数学习更加趋向于被选中的 top-2 experts,增加了 MoE 模型对于 top-2 的置信度:

单个4090可推理,2000亿稀疏大模型「天工MoE」开源自适应的 Aux Loss

有别于传统的固定系数(固定超参)的 aux loss, Skywork-MoE 在 MoE 训练的不同阶段让模型自适应的选择合适的 aux loss 超参系数,从而让 Drop Token Rate 保持在合适的区间内,既能做到 expert 分发的平衡,又能让 expert 学习具备差异化,从而提升模型整体的性能和泛化水平。在 MoE 训练的前期,由于参数学习不到位,导致 Drop Token Rate 太高(token 分布差异太大),此时需要较大的 aux loss 帮助 token load balance;在 MoE 训练的后期,Skywork-MoE 团队希望 Expert 之间仍保证一定的区分度,避免 Gating 倾向为随机分发 Token,因此需要较低的 aux loss 降低纠偏。

单个4090可推理,2000亿稀疏大模型「天工MoE」开源

训练 Infra

如何对 MoE 模型高效的进行大规模分布式训练是一个有难度的挑战。Skywork-MoE 提出了两个重要的并行优化设计,从而在千卡集群上实现了 MFU 38% 的训练吞吐,其中 MFU 以 22B 的激活参数计算理论计算量。

Expert Data Parallel

区别于 Megatron-LM 社区已有的 EP(Expert Parallel)和 ETP(Expert Tensor Parallel)设计,Skywork-MoE 团队提出了一种称之为 Expert Data Parallel 的并行设计方案,这种并行方案可以在 Expert 数量较小时仍能高效地切分模型,对 Expert 引入的 all2all 通信也可以最大程度的优化和掩盖。相较于 EP 对 GPU 数量的限制和 ETP 在千卡集群上的低效, EDP 可以较好的解决大规模分布式训练 MoE 的并行痛点,同时 EDP 的设计简单、鲁棒、易扩展,可以较快的实现和验证。

单个4090可推理,2000亿稀疏大模型「天工MoE」开源

                 一个最简单的 EDP 的例子,两卡情况下 TP = 2, EP = 2, 其中 Attention 部分采用 Tensor Parallel , Expert 部分采用 Expert Parallel

非均匀切分流水并行

由于 first stage 的 Embedding 计算和 last stage 的 Loss 计算,以及 Pipeline Buffer 的存在, 流水并行下均匀切分 Layer 时的各 stage 计算负载和显存负载均有较明显的不均衡情况。Skywork-MoE 团队提出了非均匀的流水并行切分和重计算 Layer 分配方式,使得总体的计算 / 显存负载更均衡,约有 10% 左右的端到端训练吞吐提升。

单个4090可推理,2000亿稀疏大模型「天工MoE」开源

比较均匀切分和非均匀切分下的流水并行气泡:对于一个 24 层 Layer 的 LLM, (a) 是均匀切分成 4 个 stage,每个 stage  的 layer 数量是:[6, 6, 6, 6].(b) 是经过优化后的非均匀切分方式,切成 5 个 stage, 每个 stage 的 layer 数量是:[5, 5, 5, 5, 4] , 在中间流水打满的阶段,非均匀切分的气泡更低。

此外,Skywork-MoE 还通过一系列基于 Scaling Law 的实验,探究哪些约束会影响 Upcycling 和 From Scratch 训练 MoE 模型的好坏。

单个4090可推理,2000亿稀疏大模型「天工MoE」开源

一个可以遵循的经验规则是:如果训练 MoE 模型的 FLOPs 是训练 Dense 模型的 2 倍以上,那么选择 from Scratch 训练 MoE 会更好,否则的话,选择 Upcycling 训练 MoE 可以明显减少训练成本。

以上就是单个4090可推理,2000亿稀疏大模型「天工MoE」开源的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/794649.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月26日 15:30:39
下一篇 2025年11月26日 15:31:00

相关推荐

  • Yii框架的CVE漏洞修复与版本升级

    yii框架的cve漏洞可以通过应用补丁或升级版本来修复。具体步骤包括:1. 监控yii官方博客和github仓库的安全公告。2. 及时应用针对特定cve的补丁。3. 考虑升级到包含cve修复的新版本,升级前在测试环境中备份和测试。4. 升级后进行全面功能测试,确保cve已修复。5. 检查和管理第三方…

    2025年12月5日
    200
  • HiDream-I1— 智象未来开源的文生图模型

    hidream-i1:一款强大的开源图像生成模型 HiDream-I1是由HiDream.ai团队开发的17亿参数开源图像生成模型,采用MIT许可证,在图像质量和对提示词的理解方面表现卓越。它支持多种风格,包括写实、卡通和艺术风格,广泛应用于艺术创作、商业设计、科研教育以及娱乐媒体等领域。 HiDr…

    2025年12月5日
    000
  • 如何在Laravel中集成支付网关

    在laravel中集成支付网关的核心步骤包括:1.根据业务需求选择合适的支付网关,如stripe、paypal或支付宝等;2.通过composer安装对应的sdk或laravel包,如stripe/stripe-php或yansongda/pay;3.在.env文件和config/services.…

    2025年12月5日
    300
  • js如何实现剪贴板历史 js剪贴板历史管理的4种技术方案

    要实现js剪贴板历史,核心在于拦截复制事件、存储复制内容并展示历史记录。1. 使用document.addeventlistener(‘copy’)监听复制事件,并通过e.clipboarddata.getdata获取内容;2. 用localstorage或indexeddb…

    2025年12月5日 web前端
    100
  • 如何在Laravel中实现缓存机制

    laravel的缓存机制用于提升应用性能,通过存储耗时操作结果避免重复计算。1. 配置缓存驱动:在.env文件中设置cache_driver,如redis,并安装相应扩展;2. 使用cache facade进行缓存操作,包括put、get、has、forget等方法;3. 使用remember和pu…

    2025年12月5日
    000
  • Java中Executors类的用途 掌握线程池工厂的创建方法

    如何使用executors创建线程池?1.使用newfixedthreadpool(int nthreads)创建固定大小的线程池;2.使用newcachedthreadpool()创建可缓存线程池;3.使用newsinglethreadexecutor()创建单线程线程池;4.使用newsched…

    2025年12月5日 java
    000
  • js如何解析XML格式数据 处理XML数据的4种常用方法!

    在javascript中解析xml数据主要有四种方式:原生domparser、xmlhttprequest、第三方库(如jquery)以及fetch api配合domparser。使用domparser时,创建实例并调用parsefromstring方法解析xml字符串,返回document对象以便…

    2025年12月5日 web前端
    100
  • 解决WordPress博客首页无法显示页面标题的问题

    摘要:本文针对WordPress主题开发中,使用静态页面作为博客首页时,home.php无法正确显示页面标题的问题,提供了详细的解决方案。通过使用get_the_title()函数并结合get_option(‘page_for_posts’)获取文章页面的ID,从而正确显示博…

    2025年12月5日
    000
  • 如何在Laravel中处理表单提交

    在laravel中处理表单提交的步骤如下:1. 创建包含正确method、action属性和@csrf指令的html表单;2. 在routes/web.php或routes/api.php中定义路由,如route::post(‘/your-route’, ‘you…

    2025年12月5日
    100
  • WordPress博客首页无法显示页面标题的解决方案

    本教程旨在解决WordPress主题开发中,使用静态首页和博客页面展示最新文章时,home.php无法正确获取页面标题和特色图像的问题。通过使用get_the_title()函数并结合get_option(‘page_for_posts’)获取博客页面的ID,可以确保博客首页…

    2025年12月5日
    000
  • 126邮箱官网登录入口网页版 126邮箱登录首页官网

    126邮箱官网登录入口网页版为https://mail.126.com,用户可通过邮箱账号或手机号快速注册登录,支持密码找回、扫码验证;页面适配多设备,具备分栏式收件箱、邮件筛选、批量操作及星标分类功能;附件上传下载支持实时进度与断点续传,兼容多种文件格式预览。 126邮箱官网登录入口网页版在哪里?…

    2025年12月5日
    000
  • 曝小米已终止澎湃OS 2全部开发工作!聚焦澎湃OS 3

    CNMO从海外媒体获悉,小米已全面停止对澎湃OS 2的所有开发进程,集中力量推进下一代操作系统——澎湃OS 3的开发与发布准备。 据最新消息,澎湃OS 3有望于今年8月或9月正式亮相。初步资料显示,新系统将重点提升用户界面的精致度、系统动画的流畅性以及整体运行性能。小米方面强调,将确保现有设备用户能…

    2025年12月5日
    000
  • js怎样实现粒子动画效果 炫酷粒子动画的3种实现方式

    实现炫酷的粒子动画可通过以下三种方式:1. 使用 canvas 实现基础 2d 粒子动画,通过创建 canvas 元素、定义粒子类、使用 requestanimationframe 创建动画循环来不断更新和绘制粒子;2. 使用 three.js 实现 3d 粒子动画,借助 webgl 渲染器、场景、…

    2025年12月5日 web前端
    000
  • AI 赋能云电脑智变升级 中兴通讯助力中国移动共绘端云算网新生态

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 2025中国移动云智算大会在苏州举行,中兴通讯与中国移动携手展示基于AI技术的云电脑创新成果,彰显双方在智能算力领域的深度合作。 大会集中展示了涵盖训练及推理集群、智算网络和智慧终端的全场景智算…

    2025年12月5日
    000
  • Java中MANIFEST.MF的作用 详解清单文件

    manifest.mf是java中jar文件的元数据配置文件,位于meta-inf目录下,用于定义版本、主类、依赖路径等关键信息。1. 它允许指定入口类,使jar可直接运行;2. 通过class-path管理依赖,减少类加载冲突;3. 可配置安全权限,如设置沙箱运行;4. 常见属性包括manifes…

    2025年12月5日 java
    000
  • OPPO Find X9系列新机首发ColorOS 16 10月16日发布

    10月14日,oppo正式宣布:find x9系列将全球首个搭载全新coloros 16操作系统。该系统在ai智能记录、跨平台互联以及便捷传输等功能上实现全方位进化。 OPPO Find X9 据CNMO消息,ColorOS 16全新推出的“AI一键闪记”功能,支持视频、账单、图片及语音内容的快速捕…

    2025年12月5日
    000
  • 直播带货新玩法揭秘 + AI 无人直播技术赋能:零压力实现收益翻倍

    ai无人直播不能完全取代真人主播,而是作为补充和延伸;2. 它通过虚拟数字人结合nlp、cv、tts、asr和推荐算法等ai技术实现自动化直播;3. 核心优势在于24小时不间断运营、降低人力成本、提升转化效率;4. 可应用于答疑、长尾商品销售、非高峰时段引流等场景;5. 需与真人直播协同,通过数据反…

    2025年12月5日
    000
  • JS怎么实现平滑页面锚点跳转 4种锚点跳转技巧让页面滚动更优雅

    页面锚点跳转平滑滚动可通过多种方法实现。1. 使用scrollintoview方法,通过设置behavior: ‘smooth’实现简单平滑滚动;2. 利用scrollto方法控制滚动位置并设置行为为平滑;3. 自定义动画函数实现更个性化效果,包含缓动函数控制速度变化;4. …

    2025年12月5日 web前端
    000
  • 8999 起?荣耀 Magic6 至臻版 / 保时捷设计今晚发布

    今晚将举行荣耀春季旗舰新品发布会,预计会推出荣耀 magic6 至臻版、荣耀 magic6 rsr 保时捷设计和荣耀首款 ai pc 荣耀 magicbook pro 16 三款新品。目前,官方主要对 magic6 至臻版和 magicbook pro 16 进行了预热,而荣耀 magic 6 rs…

    2025年12月5日 硬件教程
    000
  • AYANEO官宣NEXT 2掌机项目:锐龙AI Max+395处理器+内置电池

    在昨日(7月28日)举行的2025-2026战略分享会上,AYANEO正式公布了其全新旗舰掌机项目——AYANEO NEXT 2。该设备将搭载基于锐龙AI Max+395“Strix Halo”平台的高性能芯片,定位为次世代掌上游戏主机。 与近期GPD发布的可拆卸电池设计的WIN 5不同,AYANE…

    2025年12月5日 行业动态
    000

发表回复

登录后才能评论
关注微信