Llama 3低比特量化性能下降显著!全面评估结果来了 | 港大&北航&ETH

大模型力大砖飞,让llama3演绎出了新高度:

经过超大规模预训练的15T+ Token数据上,已实现了令人印象深刻的性能提升,也因远超Chinchilla推荐量再次引爆开源社区讨论。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

Llama 3低比特量化性能下降显著!全面评估结果来了 | 港大&北航&ETH

与此同时,在实际应用层面上,另一个热点话题也浮出水面:

资源有限场景下,LLaMA3的量化表现又会如何?

香港大学、北京航空航天大学、苏黎世联合邦理工学院联合推出了一项实证研究,全面揭示了LLaMA3的低比特量化能力。

Llama 3低比特量化性能下降显著!全面评估结果来了 | 港大&北航&ETH

研究人员使用现有的10种训练后量化的LoRA微调方法,评估了LLaMA3与1-8比特和各种评估数据集上的结果。他们发现:

尽管性能令人印象深刻,LLaMA3在低比特量化下仍然遭受了不可忽视的退化,特别是在超低位宽上。

Llama 3低比特量化性能下降显著!全面评估结果来了 | 港大&北航&ETH

项目已在GitHub上开源,量化模型也已登陆HuggingFace。

具体来看实证结果。

轨道1:训练后量化

表1和表2中分别提供了LLaMA3-8B和LLaMA3-70B在8种不同的PTQ方法下的低比特性能表现,覆盖了从1比特到8比特的广泛比特宽度。

1.低比特权重

其中,Round-To-Nearest (RTN) 是一种基本的舍入量化方法。

GPTQ是当前最有效率和有效的仅限权重的量化方法之一,它利用量化中的误差补偿。但在2-3比特下,当量化LLaMA3时,GPTQ会导致严重的准确性崩溃。

AWQ采用异常通道抑制方法来降低权重量化的难度,而QuIP通过优化矩阵计算来确保权重和Hessian之间的不一致性。它们都能保持LLaMA3在3比特时的能力,甚至将2比特量化推向有希望的水平。

2.超低比特权重

最近出现的二值化LLM量化方法实现了超低比特宽度LLM权重压缩。

PB-LLM采用混合精度量化策略,保留一小部分重要权重的全精度,同时将大部分权重量化为1比特。

新CG儿 新CG儿

数字视觉分享平台 | AE模板_视频素材

新CG儿 412 查看详情 新CG儿

DB-LLM通过双重二值化权重分割实现高效的LLM压缩,并提出偏差感知蒸馏策略以进一步增强2比特LLM性能。

BiLLM通过显著权重的残差逼近和非显著权重的分组量化,进一步将LLM量化边界推低至1.1比特。这些为超低比特宽度专门设计的LLM量化方法可以实现更高精度的量化LLaMA3-8B,在⩽2比特时远远超过如GPTQ、AWQ和QuIP等方法,在2比特(甚至在某些情况下3比特)下的表现。

3.低比特量化激活

还通过SmoothQuant对量化激活进行了LLaMA3评估,SmoothQuant将量化难度从激活转移到权重,以平滑激活异常值。评估显示,SmoothQuant可以在8比特和6比特的权重和激活下保留LLaMA3的准确性,但在4比特时面临崩溃。

Llama 3低比特量化性能下降显著!全面评估结果来了 | 港大&北航&ETH
Llama 3低比特量化性能下降显著!全面评估结果来了 | 港大&北航&ETH

轨道2:LoRA微调量化

在MMLU数据集上,对于LoRA-FT量化下的LLaMA3-8B,最显著的观察是,在Alpaca数据集上低秩微调不仅不能补偿量化引入的错误,甚至使性能下降更加严重。

具体来说,各种LoRA-FT量化方法在4比特下获得的量化LLaMA3性能,比没有使用LoRA-FT的4比特对应版本要差。这与LLaMA1和LLaMA2上的类似现象形成鲜明对比,在LLAMA1和LLAMA2中,4比特低秩微调量化版本甚至能轻松超过MMLU上的原始FP16对应版本。

根据直观分析,这一现象的主要原因是由于LLaMA3强大的性能得益于其大规模的预训练,这意味着原始模型量化后的性能损失不能通过在一小部分低秩参数数据上进行微调来补偿(这可以被视为原始模型的一个子集)。

尽管量化导致的显著下降不能通过微调来补偿,但4比特LoRA-FT量化的LLaMA3-8B在各种量化方法下显著优于LLaMA1-7B和LLaMA2-7B。例如,使用QLoRA方法,4比特LLaMA3-8B的平均准确率为57.0(FP16: 64.8),超过4比特LLaMA1-7B的38.4(FP16: 34.6)18.6,超过4比特LLaMA2-7B的43.9(FP16: 45.5)13.1。这表明在LLaMA3时代需要一种新的LoRA-FT量化范式。

在CommonSenseQA基准测试中也出现了类似的现象。与没有使用LoRA-FT的4比特对应版本相比,使用QLoRA和IR-QLoRA微调的模型性能也有所下降(例如,QLoRA平均下降2.8% vs IR-QLoRA平均下降2.4%)。这进一步展示了在LLaMA3中使用高质量数据集的优势,而且通用数据集Alpaca并没有对模型在其他任务中的性能作出贡献。

结论

这篇论文全面评估了LLaMA3在各种低比特量化技术(包括训练后量化和LoRA微调量化)中的性能。

此研究发现表明,尽管LLaMA3在量化后仍然展现出优越的性能,但与量化相关的性能下降是显著的,甚至在许多情况下可以导致更大的下降。

这一发现突显了在资源受限环境中部署LLaMA3可能面临的潜在挑战,并强调了在低比特量化背景下增长和改进的充足空间。通过解决低比特量化引起的性能下降,预期后续的量化范式将使LLMs在较低的计算成本下实现更强的能力,最终推动代表性的生成式人工智能达到新的高度。

论文链接:https://arxiv.org/abs/2404.14047。

项目链接:https://github.com/Macaronlin/LLaMA3-Quantizationhttps://huggingface.co/LLMQ。

以上就是Llama 3低比特量化性能下降显著!全面评估结果来了 | 港大&北航&ETH的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/797340.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月26日 16:32:05
下一篇 2025年11月26日 16:37:38

相关推荐

  • 怎样用免费工具美化PPT_免费美化PPT的实用方法分享

    利用KIMI智能助手可免费将PPT美化为科技感风格,但需核对文字准确性;2. 天工AI擅长优化内容结构,提升逻辑性,适合高质量内容需求;3. SlidesAI支持语音输入与自动排版,操作便捷,利于紧急场景;4. Prezo提供多种模板,自动生成图文并茂幻灯片,适合学生与初创团队。 如果您有一份内容完…

    2025年12月6日 软件教程
    000
  • TikTok视频无法下载怎么办 TikTok视频下载异常修复方法

    先检查链接格式、网络设置及工具版本。复制以https://www.tiktok.com/@或vm.tiktok.com开头的链接,删除?后参数,尝试短链接;确保网络畅通,可切换地区节点或关闭防火墙;更新工具至最新版,优先选用yt-dlp等持续维护的工具。 遇到TikTok视频下载不了的情况,别急着换…

    2025年12月6日 软件教程
    100
  • 助力工业转型升级金士顿工博会大放异彩

    在刚刚落幕的第二十五届中国国际工业博览会(简称“工博会”)上,参会嘉宾或满载而归,或回味无穷,但无一例外地达成了一项共识——人工智能正深度赋能新型工业化,中国制造业正从“制造”迈向“智造”,并在转型升级之路上取得了令人瞩目的成就。 工业变革的核心在于技术架构的重塑与关键技术的支撑。当现代工业逐步演进…

    2025年12月6日 行业动态
    000
  • Vue.js应用中配置环境变量:灵活管理后端通信地址

    在%ignore_a_1%应用中,灵活配置后端api地址等参数是开发与部署的关键。本文将详细介绍两种主要的环境变量配置方法:推荐使用的`.env`文件,以及通过`cross-env`库在命令行中设置环境变量。通过这些方法,开发者可以轻松实现开发、测试、生产等不同环境下配置的动态切换,提高应用的可维护…

    2025年12月6日 web前端
    000
  • VSCode性能分析与瓶颈诊断技术

    首先通过资源监控定位异常进程,再利用开发者工具分析性能瓶颈,结合禁用扩展、优化语言服务器配置及项目设置,可有效解决VSCode卡顿问题。 VSCode作为主流的代码编辑器,虽然轻量高效,但在处理大型项目或配置复杂扩展时可能出现卡顿、响应延迟等问题。要解决这些性能问题,需要系统性地进行性能分析与瓶颈诊…

    2025年12月6日 开发工具
    000
  • VSCode插件:GitLens使用详解

    GitLens是VSCode中强大的Git增强插件,提供行级代码追踪、提交历史浏览、版本对比、跨文件导航及与GitHub等平台集成;通过启用Current Line Blame和In-Line Blame,可实时查看每行代码的作者与修改时间;支持按分支、作者过滤提交记录,比较差异,并利用Go Bac…

    2025年12月6日 开发工具
    000
  • mysql如何备份存储过程和函数

    最直接且推荐的方式是使用mysqldump工具并添加–routines参数,可完整导出存储过程和函数;若需跨版本迁移,应结合–triggers、处理DEFINER用户、验证SQL_MODE,并在测试环境充分验证恢复与兼容性。 MySQL备份存储过程和函数,最直接且推荐的方式是…

    2025年12月6日 数据库
    000
  • VSCode界面优化:精简布局与元素

    通过隐藏冗余组件和调整视觉元素可提升VSCode专注度。依次操作:1. 用Ctrl+B和Ctrl+J快捷键或设置隐藏侧边栏与面板;2. 在设置中关闭活动栏显示,并在settings.json中设置”window.titleBarStyle”: “inline&#8…

    2025年12月6日 开发工具
    000
  • JavaScript持续集成与部署

    持续集成与部署(CI/CD)通过自动化测试、构建和部署提升JavaScript项目交付效率。1. CI指频繁合并代码并自动运行测试以快速发现错误;2. CD在CI通过后自动将应用部署至生产环境;3. 常用工具包括GitHub Actions、GitLab CI/CD、CircleCI和Jenkins…

    2025年12月6日 web前端
    000
  • 英特尔Q3财报:终于扭亏为盈 净利润41亿美元

    当地时间23日,美国芯片巨头英特尔发布了2025年第三季度财报,宣布公司成功实现盈利,终结了连续六个季度的亏损局面。这是英特尔在美国政府注资后发布的首份季度财报,营收和净利润双双超出市场预期,净利润高达41亿美元,与去年同期166亿美元的净亏损形成鲜明对比。受此利好消息影响,英特尔美股盘后股价大涨约…

    2025年12月6日 行业动态
    000
  • 谷歌浏览器标签页分组颜色怎么修改_谷歌浏览器标签分组个性化设置指南

    可通过右键菜单、拖拽建组或扩展程序修改谷歌浏览器标签分组颜色。首先右键分组圆点选新颜色;其次拖动标签创建分组时选择配色;最后可用“Tab Modifier”等扩展按规则自动着色。 如果您在使用谷歌浏览器时创建了标签页分组,但希望调整其颜色以便更好地区分不同任务或项目,则可以通过内置功能直接修改。以下…

    2025年12月6日 电脑教程
    000
  • 如何管理和同步VSCode的扩展配置,以便在新设备上快速恢复开发环境?

    使用 Settings Sync 是最快方式,通过 GitHub 账号同步扩展、设置、快捷键和代码片段;也可手动导出扩展列表(code –list-extensions > extensions.txt)并在新设备安装,结合备份 settings.json 等配置文件实现环境快速恢…

    2025年12月6日 开发工具
    000
  • 键盘背光模式设置

    键盘背光设置需根据设备类型选择方法:1. 先了解支持的背光模式,如常亮、呼吸、波浪等;2. 多数键盘可通过Fn组合键快捷切换亮度或模式,具体按键因品牌而异;3. 品牌机械键盘建议使用官方软件(如iCUE、Synapse)进行精细自定义;4. 笔记本通常用Fn加功能键调节,部分可在系统或厂商工具中设置…

    2025年12月6日 电脑教程
    000
  • VS Code扩展生态剖析:API设计与商店发布全流程指南

    VS Code扩展成功源于其插件化架构与丰富API。通过Activation Events、Contribution Points和Extension Host实现高效稳定的功能扩展,结合vscode.commands、languages、window、workspace等核心API提供完整开发支持…

    2025年12月6日 开发工具
    000
  • VSCode时间线:文件修改历史与代码追溯系统

    时间线功能是VSCode内置的代码追溯工具,通过整合Git历史记录提供文件修改的时间轴视图。用户可查看提交哈希、作者、时间、提交信息及变更行数,点击记录预览差异并还原版本。该功能依赖Git仓库,支持查看某行修改者、对比历史版本、恢复误删代码等操作,未启用Git时仅显示本地保存点。结合GitLens等…

    2025年12月6日 开发工具
    000
  • 蛐蛐 (QuQu)— 开源的桌面端语音输入与文本处理工具

    蛐蛐 (QuQu)是什么 蛐蛐(ququ)是一款专为中文用户打造的桌面语音输入与文本处理工具,旨在提供一个开源且免费的 wispr flow 替代方案。该工具集成了阿里巴巴的 funasr paraformer 模型,支持本地化部署与运行,有效保障用户隐私安全。同时融合先进 ai 技术,实现高精度语…

    2025年12月6日 科技
    000
  • VS Code源代码管理:变更跟踪与分支可视化操作解析

    VS Code内置Git功能提升开发效率:通过源代码管理视图实时跟踪文件变更,支持差异对比与部分暂存;借助Git图表可视化分支演进,直观管理提交历史;整合拉取、推送、分支切换等常用操作,简化协作流程。 VS Code 内置的源代码管理功能让开发者可以直接在编辑器中高效处理 Git 变更与分支操作,无…

    2025年12月6日 开发工具
    000
  • 数毛社实测PS5节能省电模式:功耗暴降55%

    近日,著名技术评测机构数毛社(digital foundry)对ps5最新系统固件中引入的“省电模式”展开深入实测。结果显示,虽然该功能对当前主机用户的实际意义较为有限,但其背后的技术方向或许正为索尼下一代便携式ps6设备铺路。 实机测试: 本次测试选用了两款已适配省电模式的游戏作品——《恶魔之魂》…

    2025年12月6日 游戏教程
    000
  • 蚂蚁开源 Ring-1T,成就推理、编程、通用智能三冠王

    ai 能不能真正“动脑子”?这个问题有了新答案。 蚂蚁开源团队推出的 Ring-1T 模型,为这个长期存在的疑问提供了最具说服力的实证。不同于以往依赖海量数据“记忆”答案的语言模型,Ring-1T 试图让 AI 在复杂问题中真正“推理”出答案。 它通过强化学习与多阶段推理机制的结合,使模型能够在反馈…

    2025年12月6日 科技
    000
  • 美团 LongCat 团队发布 LongCat-Video 探索世界模型

    美团longcat团队近日正式推出全新视频生成模型longcat-video,致力于通过视频生成技术路径深入探索“世界模型”的构建,为自动驾驶、具身智能等前沿应用场景提供坚实的技术支撑。 该模型基于DiT(Diffusion in Time)架构设计,创新性地以“条件帧数量”作为任务区分标准,原生支…

    2025年12月6日 行业动态
    000

发表回复

登录后才能评论
关注微信