为深度学习选择最好的GPU

在进行机器学习项目时,特别是在处理深度学习和神经网络时,最好使用GPU而不是CPU来处理,因为在神经网络方面,即使是一个非常基本的GPU也会胜过CPU。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

为深度学习选择最好的GPU

但是你应该买哪种GPU呢?本文将总结需要考虑的相关因素,以便可以根据预算和特定的建模要求做出明智的选择。

为什么 GPU 比 CPU 更适合机器学习?

CPU(中央处理器)是计算机的主力,它非常灵活,不仅需要处理来自各种程序和硬件的指令,并且处理速度也有一定的要求。为了在这种多任务环境中表现出色,CPU 具有少量且灵活快速的处理单元(也称为核)。

GPU(图形处理单元)GPU在多任务处理方面不那么灵活。但它可以并行执行大量复杂的数学计算。这是通过拥有更多数量的简单核心(数千个到上万)来实现的,这样可以同时处理许多简单的计算。

并行执行多个计算的要求非常适合于:

图形渲染——移动的图形对象需要不断地计算它们的轨迹,这需要大量不断重复的并行数学计算。机器和深度学习——大量的矩阵/张量计算,GPU可以并行处理。任何类型的数学计算,可以拆分为并行运行。

在Nvidia自己的博客上已经总结了CPU和GPU的主要区别:

为深度学习选择最好的GPU

张量处理单元(TPU)

随着人工智能和机器/深度学习的发展,现在已经有了更专门的处理核心,称为张量核(Tensor cores)。在执行张量/矩阵计算时,它们更快更有效。因为我们在机器/深度学习中所处理的数据类型就是张量。

虽然有专用的tpu,但一些最新的GPU也包括许多张量核,我们会在后面总结。

Nvidia vs AMD

这将是一个相当短的部分,因为这个问题的答案肯定是Nvidia

虽然可以使用AMD的gpu进行机器/深度学习,但在写本文时,Nvidia的GPU具有更高的兼容性,并且通常更好地集成到TensorFlow和PyTorch等工具中(比如目前PyTorch的AMD GPU的支持还只能在Linux上使用)。

使用AMD GPU需要使用额外的工具(ROCm),这个会有一些额外的工作,并且版本可能也不会更新的很快。这种情况将来可能会有所改善,但是现在为止,最好还是使用Nvidia。

GPU选择的主要属性

选择一个够完成机器学习任务并且符合预算的GPU,基本上归结为四个主要因素的平衡:

GPU有多少内存?GPU有多少个CUDA和/或张量核?卡使用什么芯片架构?功耗要求是多少(如果有)?

下面将逐一探讨这些方面,希望能让你更好地理解什么对你来说是重要的。

GPU内存

答案是,越多越好!

这实际上取决于你的任务,以及这些模型有多大。例如,如果你正在处理图像、视频或音频,那么根据定义,你将处理相当大量的数据,GPU RAM将是一个非常重要的考虑因素。

总有办法解决内存不足的问题(例如减少批处理大小)。但是这将会浪费训练的时间,因此需要很好地平衡需求。

根据经验,我的建议如下:

4GB:我认为这是绝对的最小值,只要你不是在处理过于复杂的模型,或者大的图像、视频或音频,这个在大多数情况下能工作,但是达不到日常使用的需要。如果你刚刚起步,想尝试一下又不想全力投入,那么可以从它开始8GB:这是一个日常学习很好的开始,可以在不超过RAM限制的情况下完成大多数任务,但在使用更复杂的图像、视频或音频模型时会遇到问题。12GB:我认为这是科研最基本的的要求。可以处理大多数较大的模型,甚至是那些处理图像、视频或音频的模型。12GB+ :越多越好,你将能够处理更大的数据集和更大的批处理大小。超过12GB才是价格真正开始上涨的开始。

一般来说,如果成本相同的话,选择“速度较慢”但内存较大的卡会更好。请记住,GPU的优势是高吞吐量,这在很大程度上依赖于可用的RAM来通过GPU传输数据。

CUDA核心和Tensor 核心

这其实很简单,越多越好。

首先考虑RAM,然后就是CUDA。对于机器/深度学习来说,Tensor 核比CUDA核更好(更快,更有效)。这是因为它们是为机器/深度学习领域所需的计算而精确设计的。

但是这并不重要,因为CUDA内核已经足够快了。如果你能得到一张包含Tensor 核的卡,这是一个很好的加分点,只是不要太纠结于它。

后面你会看到“CUDA”被提到很多次,我们先总结一下它:

CUDA核心——这些是显卡上的物理处理器,通常有数千个,4090已经1万6了。

CUDA 11 -数字可能会改变,但这是指安装的软件/驱动程序,以允许显卡正常的工作。NV会定期发布新版本,它可以像任何其他软件一样安装和更新。

CUDA代数(或计算能力)-这描述了显卡卡在它的更新迭代的代号。这在硬件上是固定的,因此只能通过升级到新卡来改变。它由数字和一个代号来区分。例子:3。x[Kepler],5。x [Maxwell], 6。x [Pascal], 7。x[Turing]和8。x(Ampere)。

芯片架构

这实际上比你想象的更重要。我们这里不讨论AMD,我的眼里只有”老黄“。

上面我们已经说了,30系列的卡就是Ampere架构,最新的40系列是 Ada Lovelace。一般老黄都会使用一个著名科学家和数学家来对架构命名,这次选择的是著名英国诗人拜伦之女,建立了循环和子程序概念的女数学家、计算机程序创始人Ada Lovelace来命名。

了解对于卡的计算能力,我们要了解2个方面:

Omneky Omneky

用最先进的深度学习为客定制个性化的广告

Omneky 54 查看详情 Omneky 显着的功能改进这里一个重要的功能就是, 混合精度训练:

使用精度低于 32 位浮点数的数字格式有很多好处。首先它们需要更少的内存,从而能够训练和部署更大的神经网络。其次它们需要更少的内存带宽,从而加快数据传输操作。第三数学运算在精度降低的情况下运行得更快,尤其是在具有 Tensor Core 的 GPU 上。混合精度训练实现了所有这些好处,同时确保与完全精度训练相比不会丢失特定于任务的准确性。它通过识别需要完全精度的步骤并仅对这些步骤使用 32 位浮点而在其他任何地方使用 16 位浮点来实现这一点。

这里是Nvidia 官方文档,有兴趣的可以看看:

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html

如果您的 GPU 具有 7.x (Turing) 或更高的架构,才有可能使用混合精确训练。也就是说 桌面的RTX 20 系列或高版本,或服务器上的 “T”或“A”系列。

混合精度训练具有如此优势的主要原因是它降低了 RAM 使用率,Tensor Core 的 GPU会加速混精度训练,如果没有的话使用FP16也会节省显存,可以训练更大的批大小,间接提升训练速度。

是否会被弃用

如果你对RAM有特别高的要求,但又没有足够的钱买高端卡,那么你可能会选择二手市场上的老款GPU。这有一个相当大的缺点……这张卡的寿命结束了。

一个典型的例子就是Tesla K80,它有4992个CUDA核心和24GB的RAM。2014年,它零售价约为7000美元。现在的价格从 150到170美元不等!(咸鱼的价格600-700左右)这么小的价格却有这么大的内存,你一定很兴奋。

但是这有一个非常大的问题。K80的计算架构是3.7 (Kepler),CUDA 11起已经不支持(当前CUDA版本为11.7)。这意味着这张卡已经废了,所以它才卖的这么便宜。

所以在选择2手卡时一定要看清楚是否支持最新版本的驱动和CUDA,这是最重要的。

高端游戏卡 VS 工作站/服务器卡

老黄基本上把卡分成了两部分。消费类显卡和工作站/服务器的显卡(即专业显卡)。

这两个部分之间有明显的区别,对于相同的规格(RAM, CUDA内核,架构),消费类显卡通常会更便宜。但是专业卡通常会有更好的质量,和较低的能源消耗(其实涡轮的噪音挺大的,放机房还可以,放家里或者试验室有点吵)。

高端(非常昂贵)的专业卡,你可能会注意到它们有很大的RAM(例如RTX A6000有48GB, A100有80GB!)。这是因为它们通常直接针对3D建模、渲染和机器/深度学习专业市场,这些市场需要高水平的RAM。再说一次,如果你有钱,买A100就对了!(H100是A100的新版,目前无法评价)

但是我个人认为,我们还是选择消费者的高端游戏卡,因为如果你不差钱,你也不会看这篇文章,对吧

选择建议

所以在最后我根据预算和需求提出一些建议。我将其分为三个部分:

低预算中等预算高预算

高预算不考虑任何超出高端消费显卡。还是那句话如果你有钱:A100,H100随便买。

本文中会包含在二手市场买到的卡片。这主要是因为我认为在低预算的情况下,二手是可以考虑的。这里还包括了专业桌面系列卡(T600、A2000和A4000),因为它的一些配置比同类消费类显卡稍差,但功耗明显更好。

低预算

为深度学习选择最好的GPU

中等预算

为深度学习选择最好的GPU

高预算

为深度学习选择最好的GPU

在线/云服务

如果你决定花钱买显卡不适合你,你可以利用谷歌Colab,它可以让你免费使用GPU。

但这是有时间限制的,如果你使用GPU太长时间,他们会把你踢出去,然后回到CPU上。如果GPU处于非活动状态太长时间,可能是在你写代码的时候,它也会把GPU拿回来。GPU也是自动分配的,所以你不能选择你想要的确切的GPU(你也可以每月9.9刀弄个Colab Pro,我个人觉得要比低预算好很多,但是要求有梯子,$49.99的Colab Pro+有点贵,不建议)。

在写本文时,通过Colab可以获得以下GPU:

为深度学习选择最好的GPU

在前面也提到了,K80有24GB的RAM和4992个CUDA核心,它基本上是两个K40卡连在一起。这意味着当你在Colab中使用K80时,你实际上可以访问一半的卡,所以也就是只有12GB和2496个CUDA内核。

总结

最后现在4090还是处于耍猴的状态,基本上要抢购或者加价找黄牛

但是16384 CUDA + 24GB,对比3090 的10496 CUDA ,真的很香。

而4080 16G的9728CUDA 如果价格能到7000内,应该是一个性价比很高的选择。12G的 4080就别考虑了,它配不上这个名字。

对于AMD的 7900XTX 应该也是一个很好的选择,但是兼容性是个大问题,如果有人测试的话可以留言。

40系列老黄一直在耍猴,所以如果不着急的话还再等等把:

你不买,我不买,明天还能降两百

以上就是为深度学习选择最好的GPU的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/832463.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月27日 08:40:03
下一篇 2025年11月27日 08:46:18

相关推荐

  • 怎样用免费工具美化PPT_免费美化PPT的实用方法分享

    利用KIMI智能助手可免费将PPT美化为科技感风格,但需核对文字准确性;2. 天工AI擅长优化内容结构,提升逻辑性,适合高质量内容需求;3. SlidesAI支持语音输入与自动排版,操作便捷,利于紧急场景;4. Prezo提供多种模板,自动生成图文并茂幻灯片,适合学生与初创团队。 如果您有一份内容完…

    2025年12月6日 软件教程
    000
  • Pages怎么协作编辑同一文档 Pages多人实时协作的流程

    首先启用Pages共享功能,点击右上角共享按钮并选择“添加协作者”,设置为可编辑并生成链接;接着复制链接通过邮件或社交软件发送给成员,确保其使用Apple ID登录iCloud后即可加入编辑;也可直接在共享菜单中输入邮箱地址定向邀请,设定编辑权限后发送;最后在共享面板中管理协作者权限,查看实时在线状…

    2025年12月6日 软件教程
    000
  • REDMI K90系列正式发布,售价2599元起!

    10月23日,redmi k90系列正式亮相,推出redmi k90与redmi k90 pro max两款新机。其中,redmi k90搭载骁龙8至尊版处理器、7100mah大电池及100w有线快充等多项旗舰配置,起售价为2599元,官方称其为k系列迄今为止最完整的标准版本。 图源:REDMI红米…

    2025年12月6日 行业动态
    000
  • Linux中如何安装Nginx服务_Linux安装Nginx服务的完整指南

    首先更新系统软件包,然后通过对应包管理器安装Nginx,启动并启用服务,开放防火墙端口,最后验证欢迎页显示以确认安装成功。 在Linux系统中安装Nginx服务是搭建Web服务器的第一步。Nginx以高性能、低资源消耗和良好的并发处理能力著称,广泛用于静态内容服务、反向代理和负载均衡。以下是在主流L…

    2025年12月6日 运维
    000
  • Linux journalctl与systemctl status结合分析

    先看 systemctl status 确认服务状态,再用 journalctl 查看详细日志。例如 nginx 启动失败时,systemctl status 显示 Active: failed,journalctl -u nginx 发现端口 80 被占用,结合两者可快速定位问题根源。 在 Lin…

    2025年12月6日 运维
    000
  • 华为新机发布计划曝光:Pura 90系列或明年4月登场

    近日,有数码博主透露了华为2025年至2026年的新品规划,其中pura 90系列预计在2026年4月发布,有望成为华为新一代影像旗舰。根据路线图,华为将在2025年底至2026年陆续推出mate 80系列、折叠屏新机mate x7系列以及nova 15系列,而pura 90系列则将成为2026年上…

    2025年12月6日 行业动态
    000
  • Linux如何优化系统性能_Linux系统性能优化的实用方法

    优化Linux性能需先监控资源使用,通过top、vmstat等命令分析负载,再调整内核参数如TCP优化与内存交换,结合关闭无用服务、选用合适文件系统与I/O调度器,持续按需调优以提升系统效率。 Linux系统性能优化的核心在于合理配置资源、监控系统状态并及时调整瓶颈环节。通过一系列实用手段,可以显著…

    2025年12月6日 运维
    000
  • 曝小米17 Air正在筹备 超薄机身+2亿像素+eSIM技术?

    近日,手机行业再度掀起超薄机型热潮,三星与苹果已相继推出s25 edge与iphone air等轻薄旗舰,引发市场高度关注。在此趋势下,多家国产厂商被曝正积极布局相关技术,加速抢占这一细分赛道。据业内人士消息,小米的超薄旗舰机型小米17 air已进入筹备阶段。 小米17 Pro 爆料显示,小米正在评…

    2025年12月6日 行业动态
    000
  • 荣耀手表5Pro 10月23日正式开启首销国补优惠价1359.2元起售

    荣耀手表5pro自9月25日开启全渠道预售以来,市场热度持续攀升,上市初期便迎来抢购热潮,一度出现全线售罄、供不应求的局面。10月23日,荣耀手表5pro正式迎来首销,提供蓝牙版与esim版两种选择。其中,蓝牙版本的攀登者(橙色)、开拓者(黑色)和远航者(灰色)首销期间享受国补优惠价,到手价为135…

    2025年12月6日 行业动态
    000
  • 环境搭建docker环境下如何快速部署mysql集群

    使用Docker Compose部署MySQL主从集群,通过配置文件设置server-id和binlog,编写docker-compose.yml定义主从服务并组网,启动后创建复制用户并配置主从连接,最后验证数据同步是否正常。 在Docker环境下快速部署MySQL集群,关键在于合理使用Docker…

    2025年12月6日 数据库
    000
  • Xbox删忍龙美女角色 斯宾塞致敬板垣伴信被喷太虚伪

    近日,海外游戏推主@HaileyEira公开发表言论,批评Xbox负责人菲尔·斯宾塞不配向已故的《死或生》与《忍者龙剑传》系列之父板垣伴信致敬。她指出,Xbox并未真正尊重这位传奇制作人的创作遗产,反而在宣传相关作品时对内容进行了审查和删减。 所涉游戏为年初推出的《忍者龙剑传2:黑之章》,该作采用虚…

    2025年12月6日 游戏教程
    000
  • 如何在mysql中分析索引未命中问题

    答案是通过EXPLAIN分析执行计划,检查索引使用情况,优化WHERE条件写法,避免索引失效,结合慢查询日志定位问题SQL,并根据查询模式合理设计索引。 当 MySQL 查询性能下降,很可能是索引未命中导致的。要分析这类问题,核心是理解查询执行计划、检查索引设计是否合理,并结合实际数据访问模式进行优…

    2025年12月6日 数据库
    000
  • VSCode入门:基础配置与插件推荐

    刚用VSCode,别急着装一堆东西。先把基础设好,再按需求加插件,效率高还不卡。核心就三步:界面顺手、主题舒服、功能够用。 设置中文和常用界面 打开软件,左边活动栏有五个图标,点最下面那个“扩展”。搜索“Chinese”,装上官方出的“Chinese (Simplified) Language Pa…

    2025年12月6日 开发工具
    000
  • php查询代码怎么写_php数据库查询语句编写技巧与实例

    在PHP中进行数据库查询,最常用的方式是使用MySQLi或PDO扩展连接MySQL数据库。下面介绍基本的查询代码写法、编写技巧以及实用示例,帮助你高效安全地操作数据库。 1. 使用MySQLi进行查询(面向对象方式) 这是较为推荐的方式,适合大多数中小型项目。 // 创建连接$host = ‘loc…

    2025年12月6日 后端开发
    000
  • 重现iPhone X颠覆性时刻!苹果2027年跳过19命名iPhone 20

    10月23日,有消息称,苹果或将再次调整iPhone的发布节奏,考虑跳过“iPhone 19”,并于2027年直接推出“iPhone 20”系列。 此举据传是为了庆祝初代iPhone发布二十周年,同时开启新一轮的设计革新,目标是复刻2017年iPhone X带来的划时代变革。 据悉,苹果或将告别长期…

    2025年12月6日 手机教程
    000
  • 如何在mysql中使用索引提高查询效率

    合理创建索引可显著提升MySQL查询效率,应优先为WHERE、JOIN、ORDER BY等高频字段建立B-Tree复合索引,如CREATE INDEX idx_status_created ON users(status, created_at, id),并遵循最左前缀原则;避免在索引列使用函数或前…

    2025年12月6日 数据库
    000
  • Linux命令行中free命令的使用方法

    free命令用于查看Linux内存使用情况,包括总内存、已用、空闲、共享、缓存及可用内存;使用-h可读格式显示,-s周期刷新,-c限制次数,-t显示总计,帮助快速评估系统内存状态。 free命令用于显示Linux系统中内存和交换空间的使用情况,包括物理内存、已用内存、空闲内存以及缓存和缓冲区的占用情…

    2025年12月6日 运维
    000
  • 在 Java 中使用 Argparse4j 接收 Duration 类型参数

    本文介绍了如何使用 `net.sourceforge.argparse4j` 库在 Java 命令行程序中接收 `java.time.Duration` 类型的参数。由于 `Duration` 不是原始数据类型,需要通过自定义类型转换器或工厂方法来处理。文章提供了两种实现方案,分别基于 `value…

    2025年12月6日 java
    000
  • Linux命令行中tail -f命令的详细应用

    tail -f 用于实时监控文件新增内容,常用于日志查看;支持 -F 处理轮转、-n 指定行数、结合 grep 过滤,可监控多文件,需注意权限与资源释放。 tail -f 是 Linux 中一个非常实用的命令,主要用于实时查看文件的新增内容,尤其在监控日志文件时极为常见。它会持续输出文件末尾新增的数…

    2025年12月6日 运维
    000
  • Phaser 3游戏画布响应式布局:实现高度适配与宽度裁剪

    本文深入探讨phaser 3游戏画布在特定响应式场景下的布局策略,尤其是在需要画布高度适配父容器并允许左右内容裁剪时。通过结合phaser的scalemanager中的`height_controls_width`模式与精细的css布局,本教程将展示如何实现一个既能保持游戏画面比例,又能完美融入不同…

    2025年12月6日 web前端
    000

发表回复

登录后才能评论
关注微信