2022年深度学习在时间序列预测和分类中的研究进展综述

时间序列预测的transformers的衰落和时间序列嵌入方法的兴起,还有异常检测、分类也取得了进步

2022年整个领域在几个不同的方面取得了进展,本文将尝试介绍一些在过去一年左右的时间里出现的更有前景和关键的论文,以及Flow Forecast [FF]预测框架。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

图片

时间序列预测

1、Are Transformers Really Effective for Time Series Forecasting?

​​https://www.php.cn/link/bf4d73f316737b26f1e860da0ea63ec8​​

Transformer相关研究对比Autoformer、Pyraformer、Fedformer等,它们的效果和问题

2022年深度学习在时间序列预测和分类中的研究进展综述

随着 Autoformer (Neurips 2021)、Pyraformer (ICLR 2022)、Fedformer (ICML 2022)、EarthFormer (Neurips 2022) 和 Non-Stationary Transformer (Neurips) 等模型的出现,时间序列预测架构的 Transformer 系列不断发展壮)。但是这些模型准确预测数据并优于现有方法的能力仍然存在疑问,特别是根据新研究(我们将在稍后讨论)。

Autoformer :扩展并改进了 Informer 模型的性能。Autoformer 具有自动关联机制,使模型能够比标准注意力更好地学习时间依赖性。它旨在准确分解时态数据的趋势和季节成分。

2022年深度学习在时间序列预测和分类中的研究进展综述

Pyraformer:作者介绍了“金字塔注意模块 (PAM),其中尺度间树结构总结了不同分辨率下的特征,尺度内相邻连接对不同范围的时间依赖性进行建模。”

Fedformer:该模型侧重于在时间序列数据中捕捉全球趋势。作者提出了一个季节性趋势分解模块,旨在捕捉时间序列的全局特征。

Earthformer: 可能是这些论文中最独特的一个,它特别专注于预测地球系统,如天气、气候和农业等。介绍了一种新的cuboid 注意力架构。这篇论文应该是潜力巨大的望,因为在河流和暴洪预测方面的研究,许多经典的Transformer都失败了。

Non-Stationary Transformer:这是使用transformer 用于预测的最新论文。作者旨在更好地调整 Transformer 以处理非平稳时间序列。他们采用两种机制:去平稳注意里和一系列平稳化机制。这些机制可以插入到任何现有的Transformer模型中,作者测试将它们插入 Informer、Autoformer 和传统的Transformer 中,都可以提高性能(在附录中,还表明它可以提高 Fedformer 的性能)。

论文的评估方法:与 Informer 类似,所有这些模型(Earthformer 除外)都在电力、交通、金融和天气数据集上进行了评估。主要根据均方误差 (MSE) 和平均绝对误差 (MAE) 指标进行评估:

图片

这篇论文很好,但是它只对比了Transformer相关的论文,其实应该与更简单的方法进行比较,比如简单的线性回归、LSTM/GRU、甚至是XGB等树形模型。另外就是它们应该不仅仅局限在一些标准数据集,因为我在其他时间序列相关数据集上没有看到很好的表现。比如说informer准确预测河流流量方面遇到了巨大的问题,与LSTM或甚至是普通的Transformer相比,它的表现通常很差。

另外就是由于与计算机视觉不同,图像维度至少保持不变,时间序列数据在长度、周期性、趋势和季节性方面可能存在巨大差异,因此需要更大范围的数据集。

在OpenReview的Non-Stationary Transformer的评论中,一位评论者也表达了这些问题,但它在最终的元评论中被否决了:

“由于该模型属于Transformer领域,而且Transformer之前已经在许多任务中表现出了最先进的水平,我认为没有必要与其他‘家族’方法进行比较。”

这是一个非常有问题的论点,并导致研究在现实世界中缺乏适用性。就像我们所认知的:XGB在表格数据的压倒性优势还没有改变,Transformer的闭门造车又有什么意义?每次都超越,每次都被吊打。

作为一个在实践中重视最先进的方法和创新模型的人,当我花了几个月的时间试图让一个所谓的“好”模型工作时,但是最后却发现,他的表现还不如简单的线性回归,那这几个月有什么意思?这个所谓的好”模型又有什么意义。

所有的 transformer 论文都同样存在有限评估的问题。我们应该从一开始就要求更严格的比较和对缺点的明确说明。一个复杂的模型最初可能并不总是优于简单模型,但需要在论文中明确指出这一点,而不是掩盖或简单地假设没有这种情况。

但是这篇论文还是很好的,比如Earthformer 在MovingMNIST 数据集和N-body MNIST数据集上进行了评估,作者用它来验证cuboid 注意力的有效性,评估了它的降水量即时预报和厄尔尼诺周期预报。我认为这是一个很好的例子,将物理知识整合到具有注意力的模型架构中,然后设计出好的测试。

2、Are Transformers Effective for Time Series Forecasting (2022)?

​​https://www.php.cn/link/bf4d73f316737b26f1e860da0ea63ec8​​

2022年深度学习在时间序列预测和分类中的研究进展综述

这篇论文探讨了 Transformer 预测数据与基线方法的能力。结果在某种程度上再次证实了Transformers 的性能通常比更简单的模型差,而且难以调整。这篇论文中的几个有趣的观点:

用基本的线性层替换自注意力并发现:“Informer 的性能随着逐渐简化而增长,表明至少对于现有的 LTSF 基准来说,自注意力方案和其他复杂模块是不必要的”调查了增加回溯窗口( look-back window )是否会提高 Transformer 的性能并发现:“SOTA Transformers 的性能略有下降,表明这些模型仅从相邻的时间序列序列中捕获相似的时间信息。”探讨了位置嵌入是否真的能很好地捕捉时间序列的时间顺序。通过将输入序列随机混洗到Transformer中来做到这一点。他们在几个数据集上发现这种改组并没有影响结果(这个编码很麻烦)。

在过去的几年里,Transformer模型的无数次时间序列实验在绝大多数情况下结果都不太理想。在很长一段时间里,我们都认为一定是做错了什么,或者遗漏了一些小的实现细节。所有这些都被认为是下一个SOTA模型的思路。但是这个论文却有一致的思路就是?如果一个简单的模型胜过Transformer,我们应该继续使用它们吗?是所有的Transformer都有固有的缺陷,还是只是当前的机制?我们是否应该回到lstm、gru或简单的前馈模型这样的架构?这些问题我都不知道答案,但是这篇论文的整体影响还有待观察。到目前为止,我认为答案可能是退一步,专注于学习有效的时间序列表示。毕竟最初BERT在NLP环境中成功地形成了良好的表示。

也就是说,我不认为我们应该把时间序列的Transformer视为完全死亡。Fedformer的表现非常接近简单模型,并且在各种消融打乱任务中表现更好。虽然的基准在很多情况下都难以进行预测,但他们对数据的内部表示却相当不错。我认为还需要进一步了解内部表示和实际预测输出之间的脱节。另外就是正如作者所建议的那样,改进位置嵌入可以在提高整体性能方面发挥关键作用。最后有一个Transformer的模型,在各种异常检测数据集上表现非常好,下面就会介绍。

3、Anomaly Transformer (ICLR Spolight 2022)

​​https://www.php.cn/link/ab22e28b58c1e3de6bcef48d3f5d8b4a​​

相当多的研究都集中在将 transformers 应用于预测,但是异常检测的研究相对较少。这篇介绍了一种(无监督)Transformer 来检测异常。该模型结合使用特别构建的异常注意机制和 minmax 策略。

图片

本文在五个真实世界的数据集上评估了模型的性能,包括Server Machine Dataset, Pooled Server Metrics, Soil Moisture Active Passive和NeurIPS-TS(它本身由五个不同的数据集组成)。虽然有人可能会对这个模型持怀疑态度,特别是关于第二篇论文的观点,但这个评估是相当严格的。Neurips-TS是一个最近创建的,专门用于提供更严格的异常检测模型评估的数据集。与更简单的异常检测模型相比,该模型似乎确实提高了性能。

作者提出了一种独特的无监督Transformer,它在过多的异常检测数据集上表现良好。这是过去几年时间序列Transformer领域最有前途的论文之一。因为预测比分类甚至异常检测更具挑战性,因为你试图预测未来多个时间步骤的巨大可能值范围。这么多的研究都集中在预测上,而忽略了分类或异常检测,对于Transformer我们是不是应该从简单的开始呢?

4、WaveBound: Dynamic Error Bounds for Stable Time Series Forecasting (Neurips 2022):

​​https://www.php.cn/link/ae95296e27d7f695f891cd26b4f37078​​

论文介绍了一种新的正则化形式,可以改进深度时间序列预测模型(特别是上述transformers )的训练。

作者通过将其插入现有的 transformer + LSTNet模型来评估。他们发现它在大多数情况下显着提高了性能。尽管他们只测试了Autoformer 模型,而没有测试 Fedformer 这样的更新模型。

新形式的正则化或损失函数总是有用的,因为它们通常可以插入任何现有的时间序列模型中。如果你 Fedformer + 非平稳机制 + Wavebound 结合起来,你可能会在性能上击败简单的线性回归 :)。

时间序列表示

虽然Transformer 再预测方向上的效果并不好,但在创建有用的时间序列表示方面Transformer还是取得了许多进展。我认为这是时间序列深度学习领域中一个令人印象深刻的新领域,应该进行更深入的探索。

Medeo Medeo

AI视频生成工具

Medeo 191 查看详情 Medeo

5、TS2Vec: Towards Universal Representation of Time Series (AAAI 2022)

​​https://www.php.cn/link/7690dd4db7a92524c684e3191919eb6b​​

TS2Vec是一个学习时间序列表示/嵌入的通用框架。这篇论文本身已经有些过时了,但它确实开始了时间序列表示学习论文的趋势。

对使用表示进行预测和异常检测进行评估,该模型优于许多模型,例如 Informer 和 Log Transformer。

6、Learning Latent Seasonal-Trend Representations for Time Series Forecasting(Neurips 2022)

​​https://www.php.cn/link/0c5534f554a26f7aeb7c780e12bb1525​​

图片

作者创建了一个模型(LAST),使用变分推理创建季节性和趋势的分离表示。

作者对他们的模型进行了下游预测任务的评价,他们通过在表示上添加一个预测器(见上图中的B)来做到这一点。它们还提供了有趣的图来显示表示的可视化。该模型在几个预测任务以及TS2Vec和成本方面都优于Autoformer。在一些预测任务上,它看起来也可能比上面提到的简单线性回归表现更好。

图片

尽管我仍然对那些只评估标准预测任务的模型持怀疑态度,但这个模型的确很亮眼,因为它关注的是表征而不是预测任务本身。如果我们看一下论文中展示的一些图表,可以看到模型似乎确实学会了区分季节性和趋势。不同数据集的可视化表示也嵌入到相同的空间中,如果它们显示出实质性的差异,那将是很有趣的。

7、CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for Time Series Forecasting (ICLR 2022)

​​https://www.php.cn/link/791d3a0048b9c200dceca07f99ddd178​​

这是2022年早些时候在ICLR上发表的一篇论文,在学习季节和趋势表示方面与LaST非常相似。由于LaST在很大程度上已经取代了它的性能,这里就不做过多的描述了。但链接在上面供那些想要阅读的人阅读。

其他有趣的论文

8、Domain Adaptation for Time Series Forecasting via Attention Sharing(ICML 2022)

​​https://www.php.cn/link/d4ea5dacfff2d8a35c0952291779290d​​

图片

当缺乏训练数据时,预测对 DNN 来说是一项挑战。这篇论文对具有丰富数据的领域使用共享注意力层,然后对目标领域使用单独的模块。

它所提出的模型使用合成数据集和真实数据集进行评估。在合成环境中,测试了冷启动学习和少样本学习,发现他们的模型优于普通 Transformer 和 DeepAR。对于真实数据集采用了 Kaggle 零售数据集,该模型在这些实验中大大优于基线。

冷启动、少样本和有限学习是极其重要的主题,但很少有论文涉及时间序列。该模型为解决其中一些问题提供了重要的一步。也就是说他们可以在更多不同的有限现实世界数据集上进行评估,并与更多基准模型进行比较, 微调或正则化的好处在于可以对任何架构进行调整。

9、When to Intervene: Learning Optimal Intervention Policies for Critical Events (Neurips 2022)

​​https://www.php.cn/link/f38fef4c0e4988792723c29a0bd3ca98​​

虽然这不是一篇“典型的”时间序列论文,但我选择将其列入这个列表,因为本文的重点是在机器发生故障之前找到进行干预的最佳时间。这被称为OTI或最佳时间干预

评估OTI的问题之一是潜在生存分析的准确性(如果不正确,评估也会不正确)。作者根据两个静态阈值评估了他们的模型,发现它表现得很好,并且绘制了不同政策的预期表现和命中与失败的比率。

这是一个有趣的问题,作者提出了一个新颖的解决方案,Openreview的一位评论者指出:“如果有一个图表显示失败概率和预期干预时间之间的权衡,那么实验可能会更有说服力,这样人们就可以直观地看到这个权衡曲线的形状。”

最近的数据集/基准

最后就是数据集的测试的基准

Monash Time Series Forecasting Archive (Neurips 2021):该存档旨在形成不同时间序列数据集的“主列表”,并提供更权威的基准。该存储库包含 20 多个不同的数据集,涵盖多个行业,包括健康、零售、拼车、人口统计等等。

​​https://www.php.cn/link/5d7009220a974e94404889274d3a9553​​

Subseasonal Forecasting Microsoft (2021):这是 Microsoft 公开发布的数据集,旨在促进使用机器学习来改进次季节预测(例如未来两到六周)。次季节预报有助于政府机构更好地为天气事件和农民的决定做准备。微软为该任务包含了几个基准模型,与其他方法相比,一般来说深度学习模型的表现相当差。最好的 DL 模型是一个简单的前馈模型,而 Informer 的表现非常糟糕。

​​https://www.php.cn/link/bf4d73f316737b26f1e860da0ea63ec8​0​

Revisiting Time Series Outlier Detection:本文评述了许多现有的异常/异常值检测数据集,并提出了35个新的合成数据集和4个真实世界数据集用于基准测试。

​​https://www.php.cn/link/bf4d73f316737b26f1e860da0ea63ec8​1​

开源的时序预测框架FF

Flow Forecast是一个开源的时序预测框架,它包含了以下模型:

Vanilla LSTM (LSTM)、SimpleTransformer、Multi-Head Attention、Transformer with a linear decoder、DARNN、Transformer XL、Informer、DeepAR、DSANet 、SimpleLinearModel等等

这是一个学习使用深度学习进行时间预测的很好的模型代码来源,有兴趣的可以看看。

​​https://www.php.cn/link/bf4d73f316737b26f1e860da0ea63ec8​2​

总结

在过去的两年里,我们已经看到了Transformer在时间序列预测中的兴起和可能的衰落和时间序列嵌入方法的兴起,以及异常检测和分类方面的额外突破。

但是对于深度学习的时间序列来说:可解释性、可视化和基准测试方法还是有所欠缺,因为模型在哪里执行,在哪里出现性能故障是非常重要的。此外,更多形式的正则化、预处理和迁移学习来提高性能可能会在未来中出现。

也许Transformer对时间序列预测有好处(也许不是),就像VIT那样如果没有Patch的出现Transformer可能还会被认为不行,我们也将继续关注Transformer在时间序列的发展或者替代。

以上就是2022年深度学习在时间序列预测和分类中的研究进展综述的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/837738.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月27日 11:08:55
下一篇 2025年11月27日 11:09:38

相关推荐

  • 网页设计css样式代码大全,快来收藏吧!

    减少很多不必要的代码,html+css可以很方便的进行网页的排版布局。小伙伴们收藏好哦~ 一.文本设置    1、font-size: 字号参数  2、font-style: 字体格式 3、font-weight: 字体粗细 4、颜色属性 立即学习“前端免费学习笔记(深入)”; color: 参数 …

    2025年12月24日
    000
  • css中id选择器和class选择器有何不同

    之前的文章《什么是CSS语法?详细介绍使用方法及规则》中带了解CSS语法使用方法及规则。下面本篇文章来带大家了解一下CSS中的id选择器与class选择器,介绍一下它们的区别,快来一起学习吧!! id选择器和class选择器介绍 CSS中对html元素的样式进行控制是通过CSS选择器来完成的,最常用…

    2025年12月24日
    000
  • php约瑟夫问题如何解决

    “约瑟夫环”是一个数学的应用问题:一群猴子排成一圈,按1,2,…,n依次编号。然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数, 再数到第m只,在把它踢出去…,如此不停的进行下去, 直到最后只剩下一只猴子为止,那只猴子就叫做大王。要求编程模拟此过程,输入m、n, 输出最后那个大王的编号。…

    好文分享 2025年12月24日
    000
  • CSS新手整理的有关CSS使用技巧

    [导读]  1、不要使用过小的图片做背景平铺。这就是为何很多人都不用 1px 的原因,这才知晓。宽高 1px 的图片平铺出一个宽高 200px 的区域,需要 200*200=40, 000 次,占用资源。  2、无边框。推荐的写法是     1、不要使用过小的图片做背景平铺。这就是为何很多人都不用 …

    好文分享 2025年12月23日
    000
  • CSS中实现图片垂直居中方法详解

    [导读] 在曾经的 淘宝ued 招聘 中有这样一道题目:“使用纯css实现未知尺寸的图片(但高宽都小于200px)在200px的正方形容器中水平和垂直居中。”当然出题并不是随意,而是有其现实的原因,垂直居中是 淘宝 工作中最 在曾经的 淘宝UED 招聘 中有这样一道题目: “使用纯CSS实现未知尺寸…

    好文分享 2025年12月23日
    000
  • CSS派生选择器

    [导读] 派生选择器通过依据元素在其位置的上下文关系来定义样式,你可以使标记更加简洁。在 css1 中,通过这种方式来应用规则的选择器被称为上下文选择器 (contextual selectors),这是由于它们依赖于上下文关系来应 派生选择器 通过依据元素在其位置的上下文关系来定义样式,你可以使标…

    好文分享 2025年12月23日
    000
  • CSS 基础语法

    [导读] css 语法 css 规则由两个主要的部分构成:选择器,以及一条或多条声明。selector {declaration1; declaration2;     declarationn }选择器通常是您需要改变样式的 html 元素。每条声明由一个属性和一个 CSS 语法 CSS 规则由两…

    2025年12月23日
    300
  • CSS 高级语法

    [导读] 选择器的分组你可以对选择器进行分组,这样,被分组的选择器就可以分享相同的声明。用逗号将需要分组的选择器分开。在下面的例子中,我们对所有的标题元素进行了分组。所有的标题元素都是绿色的。h1,h2,h3,h4,h5 选择器的分组 你可以对选择器进行分组,这样,被分组的选择器就可以分享相同的声明…

    好文分享 2025年12月23日
    000
  • CSS id 选择器

    [导读] id 选择器id 选择器可以为标有特定 id 的 html 元素指定特定的样式。id 选择器以 ” ” 来定义。下面的两个 id 选择器,第一个可以定义元素的颜色为红色,第二个定义元素的颜色为绿色: red {color:re id 选择器 id 选择器可以为标有特…

    好文分享 2025年12月23日
    000
  • 有关css的绝对定位

    [导读] 定位(左边和顶部) css定位属性将是网虫们打开幸福之门的钥匙: h4 { position: absolute; left: 100px; top: 43px }这项css规则让浏览器将 的起始位置精 确地定在距离浏览器左边100象素,距离其 定位(左边和顶部) css定位属性将是网虫们…

    好文分享 2025年12月23日
    000
  • html5怎么加php_html5用Ajax与PHP后端交互实现数据传递【交互】

    HTML5不能直接运行PHP,需通过Ajax与PHP通信:前端用fetch发送请求,PHP接收处理并返回JSON,前端解析响应更新DOM;注意跨域、编码、CSRF防护和输入过滤。 HTML5 本身是前端标记语言,不能直接运行 PHP 代码,但可以通过 Ajax(异步 JavaScript)与 PHP…

    2025年12月23日
    300
  • 手机端怎么运行html文件_手机端运行html文件方法【教程】

    可通过手机浏览器、代码编辑器、本地服务器或在线工具四种方式预览HTML文件:一、用文件管理器打开HTML并选择浏览器即可渲染页面;二、使用Acode等编辑器导入文件后点击预览功能实时查看;三、对复杂项目可用KSWEB搭建本地服务器,将文件放入指定目录后通过http://127.0.0.1:8080访…

    2025年12月23日
    000
  • html5如何插入txt纯文本_html5txt文本嵌入与编码设置【实操】

    可通过iframe、fetch+pre、object标签或服务端预处理四种方式在HTML5中显示外部TXT文件,需重点处理字符编码(如UTF-8声明、BOM、响应头)并防范XSS风险。 如果您希望在HTML5页面中显示外部TXT纯文本文件的内容,浏览器默认不支持直接嵌入TXT文件为可渲染内容,必须通…

    2025年12月23日
    000
  • php如何html_在PHP代码中输出HTML内容【输出】

    必须确保PHP正确解析并输出原始HTML字符串而非转义文本;可通过echo/print直接输出、heredoc语法处理多行含变量HTML,或用PHP结束标签切换至纯HTML模式。 如果您在PHP脚本中需要将HTML代码作为响应内容发送给浏览器,则必须确保PHP正确解析并输出原始HTML字符串,而非将…

    2025年12月23日
    000
  • html5标题如何缩短_HTML5标题缩短方法与显示优化技巧【详解】

    HTML5标题优化有五种方法:一、CSS text-overflow截断;二、JavaScript动态裁剪;三、服务端预截断;四、CSS clamp响应式缩放;五、HTML语义化标记配合aria属性。 如果您在网页开发中发现HTML5标题过长,导致在移动端或窄屏设备上显示不全、换行错乱或影响页面美观…

    2025年12月23日
    000
  • 如何查找HTML文件路径_资源定位技巧【指南】

    使用浏览器开发者工具可快速定位HTML资源路径:打开Network面板刷新页面,查看Request URL及状态码;相对路径以HTML文件所在目录为基准;注意base标签对路径解析的影响。 如果您在开发网页时需要快速定位HTML文件或其引用的资源路径,可能由于项目结构复杂或路径配置错误导致资源无法加…

    2025年12月23日
    000
  • phpstorm怎么新建html5_PHPStorm新建HTML File选HTML5模板快速创建【新建】

    PHPStorm新建HTML文件未自动应用HTML5结构时,需检查并设置默认HTML模板为HTML5格式,或使用Live Template输入html5后按Tab键快速生成标准结构。 如果您在 PHPStorm 中新建 HTML 文件时未自动应用 HTML5 文档结构,则可能是模板配置未启用或文件类…

    2025年12月23日
    300
  • html5能否插入在线文档链接_html5在线文档嵌入与权限设置【教程】

    HTML5中嵌入在线文档需根据来源选择方案:一、用iframe嵌入Google Docs等公开文档,须设“任何人可查看”;二、通过OnlyOffice等第三方服务中转,确保响应头允许嵌入;三、用object/embed加载PDF,需服务器配置CORS;四、无法修改源站时,可用服务端代理过滤禁用响应头…

    2025年12月23日
    000
  • html中怎么运行sql语句_html中运行sql语句方法【教程】

    必须通过后端服务执行SQL操作。一、PHP与MySQL交互:使用PHP脚本在服务器端连接数据库,执行查询并嵌入HTML输出,避免硬编码凭证。二、Ajax调用API:前端通过JavaScript向后端API发送请求,服务端执行SQL并返回JSON数据,前端动态渲染结果。三、SQLite与JavaScr…

    2025年12月23日
    000
  • html5游戏怎么加密_HT5用JS混淆或加密工具保护游戏代码逻辑【加密】

    HTML5游戏可通过五种方法保护JavaScript核心逻辑:一、混淆工具重命名变量并压缩代码;二、WebAssembly封装敏感算法;三、关键逻辑移至服务端校验;四、动态解密执行加密函数;五、混淆资源路径并碎片化加载。 如果您的HTML5游戏使用JavaScript编写,源代码容易被直接查看和复制…

    2025年12月23日
    000

发表回复

登录后才能评论
关注微信