单卡就能运行AI画画模型,小白也能看懂的教程来了,还有100万卡时免费NPU算力可用

最近爆火的AI绘图,相信大家并不陌生了。

从AI绘图软件生成的作品打败一众人类艺术家,斩获数字艺术类冠军,到如今DALL.E、Imagen、novelai等国内外平台遍地开花。

也许你也曾点开过相关网站,尝试让AI描绘你脑海中的风景,又或者上传了一张自己帅气/美美的照片,然后对着最后生成的糙汉哭笑不得。

那么,在你感受AI绘图魅力的同时,有没有想过(不你肯定想过),它背后的奥妙究竟是什么?

图片

△美国科罗拉多州技术博览会中获得数字艺术类冠军的作品——《太空歌剧院》

一切,都要从一个名为DDPM的模型说起…

DDPM是什么?

DDPM模型,全称Denoising Diffusion Probabilistic Model,可以说是现阶段diffusion模型的开山鼻祖。

不同于前辈GAN、VAE和flow等模型,diffusion模型的整体思路是通过一种偏向于优化的方式,逐步从一个纯噪音的图片中生成图像。

图片

△现在已有生成图像模型的对比

有的小伙伴可能会问了,什么是纯噪音图片?

很简单,老式电视机没信号时,伴随着“刺啦刺啦”噪音出现的雪花图片,就属于纯噪音图片。

而DDPM在生成阶段所做的事情,就是把这些个“雪花”一点点移除,直到清晰的图像露出它的庐山真面目,我们把这个阶段称之为“去噪”。

图片

△纯噪音图片:老电视的雪花屏

通过描述,大家可以感受到,去噪其实是个相当复杂的过程。

没有一定的去噪规律,可能你忙活了好半天,到最后还是对着奇形怪状的图片欲哭无泪。

当然,不同类型的图片也会有不同的去噪规律,至于怎么让机器学会这种规律,有人灵机一动,想到了一种绝妙的方法:

既然去噪规律不好学,那我为什么不先通过加噪的方式,先把一张图片变成纯噪音图像,再把整个过程反着来一遍呢?

这便奠定了diffusion模型整个训练-推理的流程:先在前向过程(forward process)通过逐步加噪,将图片转换为一个近似可用高斯分布的纯噪音图像;

紧接着在反向过程(reverse process)中逐步去噪,生成图像;

最后以增大原始图像和生成图像的相似度作为目标,优化模型,直至达到理想效果。​

图片

△DDPM的训练-推理流程

到这里,不知道大家的接受度怎样?如果感觉没问题,轻轻松松的话,准备好,我要开始上大招(深入理论)啦。

1.1.1 前向过程(forward process)

前向过程又称为扩散过程(diffusion process),整体是一个参数化的马尔可夫链(Markov chain)。从初始数据分布x0~q(x)出发,每步在数据分布中添加高斯噪音,持续T次。其中从第t-1步xt-1到第t步xt的过程可以用高斯分布表示为:

图片

通过合适的设置,随着t不断增大,原始数据x0会逐渐失去他的特征。我们可以理解为,在进行了无限次的加噪步骤后,最终的数据xT会变成没有任何特征,完全是随机噪音的图片,也就是我们最开始说的“雪花屏”。

在这个过程中,每一步的变化是可以通过设置超参βt来控制,在我们知晓最开始的图片是什么的前提下,前向加噪的整个过程可以说是已知且可控的,我们完全能知道每一步的生成数据是什么样子。

但问题在于,每次的计算都需要从起始点出发,结合每一步的过程,慢慢推导至你想要的某步数据xt,过于麻烦。好在因为高斯分布的一些特性,我们可以一步到位,直接从x0得到xt。​

注意,这里的

图片

图片为组合系数,本质上是超参的βt表达式。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

图片

1.1.2 反向过程(reverse process)

和前向过程同理,反向过程也是一个马尔可夫链(Markov chain),只不过这里用到的参数不同,至于具体参数是什么,这个就是我们需要机器来学习的部分啦。

在了解机器如何学习前,我们首先思考,基于某一个原始数据x0,从第t步xt,精准反推回第t-1步xt-1的过程应该是怎样的?

答案是,这个仍可以用高斯分布表示:

图片

注意这里必须要考虑x0,意思是反向过程最后生成图像还是要与原始数据有关。输入猫的图片,模型生成的图像应该是猫,输入狗的图片,生成的图像也应该和狗相关。若是去除掉x0,则会导致无论输入哪种类型的图片训练,最后diffusion生成的图像都一样,“猫狗不分”。

经过一系列的推导,我们发现,反向过程中的参数

图片

图片

,竟然还是可以用x0,xt,以及参数βt,图片表示出来的,是不是很神奇~

图片

当然,机器事先并不知道这个真实的反推过程,它能做到的,只是用一个大概近似的估计分布去模拟,表示为p0(xt-1|xt)。

1.1.3 优化目标

在最开始我们提到,需要通过增大原始数据和反向过程最终生成数据的相似度来优化模型。在机器学习中,我们计算该相似度参考的是交叉熵(cross entropy)。

关于交叉熵,学术上给出的定义是“用于度量两个概率分布间的差异性信息”。换句话讲,交叉熵越小,模型生成的图片就越和原始图片接近。但是,在大多数情况下,交叉熵是很难或者无法通过计算得出的,所以我们一般会通过优化一个更简单的表达式,达到同样的效果。

Diffusion模型借鉴了VAE模型的优化思路,将variational lower bound(VLB,又称ELBO)替代cross entropy来作为最大优化目标。通过无数步的分解,我们最终得到:

Typewise.app Typewise.app

面向客户服务和销售团队的AI写作解决方案。

Typewise.app 39 查看详情 Typewise.app

图片

看到这么复杂的公式,好多小伙伴肯定头都大了。但不慌,这里需要关注的,只是中间的Lt-1罢了,它表示的是xt和xt-1之间估计分布p0(xt-1|xt)和真实分布q(xt-1|xt,x0)的差距。差距越小,模型最后生成图片的效果就越好。

1.1.4 上代码

在了解完DDPM背后的原理,接下来就让我们看看DDPM模型究竟是如何实现…

才怪啦。相信看到这里的你,肯定也不想遭受成百上千行代码的洗礼。

好在MindSpore已经为大家提供了开发完备的DDPM模型,训练推理两手抓,操作简单,单卡即可运行,想要体验效果的小伙伴,只需要先

pip install denoising-diffusion-mindspore

然后,参考如下代码配置参数:

图片

对重要的参数进行一些解析:

GaussianDiffusion

image_size: 图片大小timesteps: 加噪步数sampling_timesteps: 采样步数,为提升推理性能,需小于加噪步数

Trainer

folder_or_dataset: 对应图片中的path, 可以是已下载数据集的路径(str),也可以是已做好数据处理的VisionBaseDataset, GeneratorDataset 或 MindDatasettrain_batch_size:batch大小train_lr: 学习率train_num_steps: 训练步数

“进阶版”DDPM模型MindDiffusion

DDPM只是Diffusion这个故事的开篇。目前,已有无数的研究人员被其背后瑰丽的世界所吸引,纷纷投身其中。

在不断优化模型的同时,他们也逐渐开发了Diffusion在各个领域的应用。

其中,包括了计算机视觉领域的图像优化、inpainting、3D视觉、自然语言处理中的text-to-speech、AI for Science领域的分子构象生成、材料设计等。

更有来自斯坦福大学计算机科学系的博士生Eric Zelikman大开脑洞,尝试将DALLE-2与最近另一个大火的对话模型ChatGPT相结合,制作出了温馨的绘本故事。

图片

△DALLE-2 + ChatGPT合力完成的,关于一个名叫“罗比”的小机器人的故事

不过最广为大众所知的,应该还是它在文生图(text-to-image)方面的应用。输入几个关键词或者一段简短的描述,模型便可以为你生成相对应的图画。

比如,输入“城市夜景 赛博朋克 格雷格·路特科夫斯基”,最后生成的便是一张色彩鲜明,颇具未来科幻风格的作品。

图片

再比如,输入“莫奈 撑阳伞的女人 月亮 梦幻”,生成的便是一张极具有朦胧感的女人画像,色彩搭配的风格有木有让你想起莫奈的《睡莲》?

图片

想要写实风格的风景照作为屏保?没问题!

图片

△乡村 田野 屏保

想要二次元浓度多一点的?也可以!

图片

△来自深渊 风景 绘画 写实风格

以上这些图片,均是由MindDiffusion平台的下的悟空画画制作而成的哦,悟空画画是基于扩散模型的中文文生图大模型,由华为诺亚团队携手中软分布式并行实验室,昇腾计算产品部联合开发。

模型基于Wukong dataset训练,并使用昇思框架(MindSpore)+昇腾(Ascend)软硬件解决方案实现。

跃跃欲试的小伙伴先别着急,为了让大家拥有更好的体验,更多自行开发的空间,我们打算让MindDiffusion中的模型同样也具备可训练、可推理的特性,预计在明年就要和大家见面啦,敬请期待。

欢迎大家头脑风暴,生成各种别具风格的作品哦~

(据去内部打探情报的同事说,有人已经开始尝试“张飞绣花”、“刘华强砍瓜”、“古希腊神大战哥斯拉”了。ummmm,怎么办,突然就很期待成品了呢(ಡωಡ))

One More Thing

最后的最后,在Diffusion爆火的如今,有人也曾发出过疑问,它为什么可以做到如此的大红大紫,甚至风头开始超过GAN网络?

Diffusion的优势突出,劣势也很明显;它的诸多领域仍是空白,它的前方还是一片未知。

为什么却有那么多的人在孜孜不倦地对它进行研究呢?

兴许,马毅教授的一番话,可以给我们提供一种解答。

但diffusion process的有效性、以及很快取代GAN也充分说明了一个简单道理:

几行简单正确的数学推导,可以比近十年的大规模调试超参调试网络结构有效得多。

或许,这就是Diffusion模型的魅力吧。

参考链接(可滑动查看):

[1]https://medium.com/mlearning-ai/ai-art-wins-fine-arts-competition-and-sparks-controversy-882f9b4df98c

[2]Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. arXiv:2006.11239, 2020.

[3]Ling Yang, Zhilong Zhang, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao, Wentao Zhang, Ming-Hsuan Yang, and Bin Cui. Diffusion models: A comprehensive survey of methods and applications. arXiv preprint arXiv:2209.00796, 2022.

[4]https://lilianweng.github.io/posts/2021-07-11-diffusion-models

[5]https://github.com/lvyufeng/denoising-diffusion-mindspore

[6]https://zhuanlan.zhihu.com/p/525106459

[7]https://zhuanlan.zhihu.com/p/500532271

[8]https://www.zhihu.com/question/536012286

[9]https://mp.weixin.qq.com/s/XTNk1saGcgPO-PxzkrBnIg

[10]https://m.weibo.cn/3235040884/4804448864177745

以上就是单卡就能运行AI画画模型,小白也能看懂的教程来了,还有100万卡时免费NPU算力可用的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/839500.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月27日 11:53:01
下一篇 2025年11月27日 11:58:46

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    000
  • 如何用 CSS Paint API 实现倾斜的斑马线间隔圆环?

    实现斑马线边框样式:探究 css paint api 本文将探究如何使用 css paint api 实现倾斜的斑马线间隔圆环。 问题: 给定一个有多个圆圈组成的斑马线图案,如何使用 css 实现倾斜的斑马线间隔圆环? 答案: 立即学习“前端免费学习笔记(深入)”; 使用 css paint api…

    2025年12月24日
    000
  • 如何使用CSS Paint API实现倾斜斑马线间隔圆环边框?

    css实现斑马线边框样式 想定制一个带有倾斜斑马线间隔圆环的边框?现在使用css paint api,定制任何样式都轻而易举。 css paint api 这是一个新的css特性,允许开发人员创建自定义形状和图案,其中包括斑马线样式。 立即学习“前端免费学习笔记(深入)”; 实现倾斜斑马线间隔圆环 …

    2025年12月24日
    100

发表回复

登录后才能评论
关注微信