谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

在开发机器人学习方法时,如果能整合大型多样化数据集,再组合使用强大的富有表现力的%ignore_a_1%(如 Transformer),那么就有望开发出具备泛化能力且广泛适用的策略,从而让机器人能学会很好地处理各种不同的任务。比如说,这些策略可让机器人遵从自然语言指令,执行多阶段行为,适应各种不同环境和目标,甚至适用于不同的机器人形态。

但是,近期在机器人学习领域出现的强大模型都是使用监督学习方法训练得到的。因此,所得策略的性能表现受限于人类演示者提供高质量演示数据的程度。这种限制的原因有二。

第一,我们希望机器人系统能比人类远程操作者更加熟练,利用硬件的全部潜力来快速、流畅和可靠地完成任务。第二,我们希望机器人系统能更擅长自动积累经验,而不是完全依赖高质量的演示。

从原理上看,强化学习能同时提供这两种能力。

近期出现了一些具有潜力的进展,表明大规模机器人强化学习在多种应用场景中能够取得成功,比如机器人的抓取和堆叠能力、学习具有人类指定奖励的不同任务、学习多任务策略、学习基于目标的策略以及机器人导航。然而,研究表明,如果使用强化学习来训练Transformer等功能强大的模型,则更难以有效地进行大规模实例化

Google DeepMind 最近提出了 Q-Transformer,旨在将基于多样化真实世界数据集的大规模机器人学习与基于强大 Transformer 的现代策略架构结合起来

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

论文:https://q-transformer.github.io/assets/q-transformer.pdf项目:https://q-transformer.github.io/

尽管从原理上来看,直接使用Transformer来替代现有的架构(如ResNets或更小的卷积神经网络)在概念上很简单,但设计一种能够有效利用这种架构的方案却非常困难。只有在能够使用大规模多样化的数据集时,大型模型才能发挥其效力-小规模、范围狭窄的模型并不需要这种能力,也无法从中获益

尽管之前有研究通过仿真数据来创建这样的数据集,但最有代表性的数据还是来自真实世界。

因此,DeepMind 表示,该研究的重点是通过离线强化学习利用 Transformer 并整合之前收集的大型数据集

离线强化学习方法是利用先前已有的数据进行训练,其目标是根据给定的数据集推导出最有效的可能策略。当然,也可以利用额外自动收集的数据来增强这个数据集,但训练过程与数据收集过程是分开的,这为大规模机器人应用提供了一个额外的工作流程

在使用 Transformer 模型来实现强化学习方面,另一大问题是设计一个可以有效训练这种模型的强化学习系统。有效的离线强化学习方法通常是通过时间差更新来进行 Q 函数估计。由于 Transformer 建模的是离散的 token 序列,所以可以将 Q 函数估计问题转换成一个离散 token 序列建模问题,并为序列中的每个 token 设计一个合适的损失函数。

DeepMind 采用的方法是按维度离散化方案,这是为了避免动作基数呈指数爆炸。具体而言,动作空间的每个维度都被视为强化学习中的一个独立时间步骤。离散化中的不同 bin 对应于不同的动作。这种按维度离散化的方案使得我们可以使用带有一个保守的正则化器的简单离散动作 Q 学习方法来处理分布转变情况

DeepMind 提出了一种专门的正则化器,其旨在最小化未被使用动作的值。研究表明,这种方法可以有效地学习范围狭窄的类似演示的数据,并且也可以学习带有探索噪声的范围更广的数据

最后,他们还采用了一种混合更新机制,其将蒙特卡洛和 n 步返回与时间差备份(temporal difference backups)组合到了一起。结果表明这种做法能提升基于 Transformer 的离线强化学习方法在大规模机器人学习问题上的表现。

这项研究的主要贡献是Q-Transformer,它是一种基于Transformer架构的用于机器人离线强化学习的方法。Q-Transformer对Q值进行了按维度的token化,并且已经成功应用于大规模多样化的机器人数据集,包括真实世界数据。图1展示了Q-Transformer的组件

谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

DeepMind 进行了实验评估,包括仿真实验和大规模真实世界实验,旨在严格比较和实际验证。其中,我们采用了大规模的基于文本的多任务策略进行学习,并验证了 Q-Transformer 的有效性

在真实世界实验中,他们使用的数据集包含 3.8 万个成功演示和 2 万个失败的自动收集的场景,这些数据是通过 13 台机器人在 700 多个任务上收集的。Q-Transformer 的表现优于之前提出的用于大规模机器人强化学习的架构,以及之前提出的 Decision Transformer 等基于 Transformer 的模型。

方法概览

为了使用Transformer进行Q学习,DeepMind采取的方法是对动作空间进行离散化和自回归处理

要学习一个使用TD学习的Q函数,经典方法基于贝尔曼更新规则

谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

研究者对贝尔曼更新进行了修改,使之能为每个动作维度执行,做法是将问题的原始 MDP 转换成每个动作维度都被视为 Q 学习的一个步骤的 MDP。

具体而言,对于给定的动作维度 d_A,新的贝尔曼更新规则可以表述为:

谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

这意味着对于每个中间动作维度,要在给定相同状态的情况下最大化下一个动作维度,而对于最后一个动作维度,使用下一状态的第一个动作维度。这种分解能确保贝尔曼更新中的最大化依然易于处理,同时还能确保原始 MDP 问题仍可得到解决。

谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

为了兼顾离线学习过程中的分布变化情况,DeepMind 还引入了一种简单的正则化技术,其是将未曾见过的动作的值降到最低。

为了加快学习速度,他们还采用了蒙特卡洛返回方法。这种方法不仅使用了对于给定事件片段(episode)的返回即用(return-to-go),还使用了可跳过按维度最大化的 n 步返回(n-step returns)

实验结果

在实验中,DeepMind对Q-Transformer进行了评估,涵盖了一系列真实世界任务。同时,他们还将每个任务的数据限制在只包含100个人类演示的范围内

在演示中,除了演示之外,他们还添加了自动收集的失败事件片段,以创建一个数据集。这个数据集包含了来自演示的3.8万个正例和2万个自动收集的负例

谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

相比于 RT-1、IQL 和 Decision Transformer (DT) 等基准方法,Q-Transformer 可以有效地利用自动事件片段来显著提升其使用技能的能力,这些技能包括从抽屉里取放物品、将物体移动到目标附近、开关抽屉。

研究者还在一个高难度的模拟取物任务上对新提出的方法进行了测试 —— 在该任务中,仅有约 8% 的数据是正例,其余的都是充满噪声的负例。

在这个任务中,Q-学习方法如QT-Opt、IQL、AW-Opt和Q-Transformer通常表现更好,因为它们能够利用动态规划来学习策略,并利用负例进行优化

谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

基于这个取物任务,研究者进行了消融实验,结果发现保守的正则化器和 MC 返回都对保持性能很重要。如果切换成 Softmax 正则化器,性能表现显著更差,因为这会将策略过于限制在数据分布中。这说明 DeepMind 这里选择的正则化器能更好地应对这个任务。

谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

他们对于n步返回的消融实验发现,尽管这可能会引入偏差,但这种方法可以在显著更少的梯度步骤内实现同等的高性能,有效地处理许多问题

谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

研究人员还尝试在更大规模的数据集上运行Q-Transformer。他们将正例数量扩大到11.5万,负例数量增至18.5万,从而得到一个包含30万个事件片段的数据集。使用这个大型数据集,Q-Transformer仍然能够学习,并且甚至比RT-1 BC基准表现更好

谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

最后,他们将Q-Transformer训练的Q函数作为可供性模型(affordance model)与语言规划器组合在一起,类似于SayCan

谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

Q-Transformer 可供性估计的效果由于之前的使用 QT-Opt 训练的 Q 函数;如果再将未被采样的任务重新标注为训练期间当前任务的负例,效果还能更好。由于 Q-Transformer 不需要 QT-Opt 训练使用的模拟到真实(sim-to-real)训练,因此如果缺乏合适的模拟,那么使用 Q-Transformer 会更容易。

为了测试完整的「规划 + 执行」系统,他们实验了使用 Q-Transformer 同时进行可供性估计和实际策略执行,结果表明它优于之前的 QT-Opt 和 RT-1 组合。

谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑

从给定图像的任务可供性值示例中可以观察到,Q-Transformer 在下游的「规划 + 执行」框架中能够提供高质量的可供性值

请阅读原文以获取更多详细内容

以上就是谷歌DeepMind:将大模型与强化学习相结合,打造机器人感知世界的智能大脑的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/874864.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月28日 06:55:34
下一篇 2025年11月28日 07:00:41

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    300
  • 如何用 CSS Paint API 实现倾斜的斑马线间隔圆环?

    实现斑马线边框样式:探究 css paint api 本文将探究如何使用 css paint api 实现倾斜的斑马线间隔圆环。 问题: 给定一个有多个圆圈组成的斑马线图案,如何使用 css 实现倾斜的斑马线间隔圆环? 答案: 立即学习“前端免费学习笔记(深入)”; 使用 css paint api…

    2025年12月24日
    000
  • 如何使用CSS Paint API实现倾斜斑马线间隔圆环边框?

    css实现斑马线边框样式 想定制一个带有倾斜斑马线间隔圆环的边框?现在使用css paint api,定制任何样式都轻而易举。 css paint api 这是一个新的css特性,允许开发人员创建自定义形状和图案,其中包括斑马线样式。 立即学习“前端免费学习笔记(深入)”; 实现倾斜斑马线间隔圆环 …

    2025年12月24日
    100

发表回复

登录后才能评论
关注微信