Spring Boot XML Jackson 校验:禁止忽略未知属性

spring boot xml jackson 校验:禁止忽略未知属性

本文介绍了如何配置 Spring Boot 应用,使其在使用 Jackson 反序列化 XML 请求体时,能够严格校验并拒绝包含未知属性的请求,从而保证数据的完整性和安全性。通过配置 `spring.jackson.deserialization.fail-on-unknown-properties` 属性,可以实现这一功能,并有效防止恶意或错误的请求数据进入系统。

在使用 Spring Boot 构建 RESTful API 时,我们经常需要处理 XML 格式的请求数据。默认情况下,Jackson 库(Spring Boot 默认的 JSON/XML 处理库)在反序列化 XML 时,会忽略请求体中未在 Java 类中定义的属性,这可能会导致数据丢失或潜在的安全问题。为了避免这种情况,我们需要配置 Spring Boot,使其在遇到未知属性时抛出异常。

配置 Jackson 以禁止忽略未知属性

Spring Boot 提供了便捷的方式来配置 Jackson 的反序列化行为。只需在 application.properties 或 application.yml 文件中添加以下配置:

spring.jackson.deserialization.fail-on-unknown-properties=true

或者,在 application.yml 中:

spring:  jackson:    deserialization:      fail-on-unknown-properties: true

这个配置告诉 Jackson 在反序列化过程中,如果遇到目标类中不存在的属性,则抛出一个 com.fasterxml.jackson.databind.exc.UnrecognizedPropertyException 异常。

示例代码

假设我们有以下 Kotlin 数据类 Data:

data class Data(   val item: String? = null)

以及一个处理 POST 请求的 Controller:

Lifetoon Lifetoon

免费的AI漫画创作平台

Lifetoon 92 查看详情 Lifetoon

import org.springframework.http.MediaTypeimport org.springframework.web.bind.annotation.PostMappingimport org.springframework.web.bind.annotation.RequestBodyimport org.springframework.web.bind.annotation.RestController@RestControllerclass DataController {    @PostMapping("/data", consumes = [MediaType.APPLICATION_XML_VALUE], produces = [MediaType.APPLICATION_XML_VALUE])    fun pushMasterData(@RequestBody data: Data): Data {        return data    }}

如果我们发送以下 XML 请求:

   foo   This should not be allowed!

在没有配置 spring.jackson.deserialization.fail-on-unknown-properties=true 的情况下,服务器会接受这个请求,并且 Data 对象中的 item 属性会被正确赋值为 “foo”,而 trash 属性会被忽略。

但是,配置了 spring.jackson.deserialization.fail-on-unknown-properties=true 之后,服务器会返回一个 400 Bad Request 错误,并包含一个 UnrecognizedPropertyException 异常信息,指出 trash 属性无法被识别。

注意事项

确保你的项目中引入了 Jackson XML 依赖。通常,在使用 spring-boot-starter-web 或 spring-boot-starter-webflux 时,Jackson 依赖会被自动引入。如果没有,你需要手动添加:

    com.fasterxml.jackson.dataformat    jackson-dataformat-xml

如果你的请求体使用了 XML 根元素,例如 , 并且你希望 Jackson 直接将 XML 的子元素映射到 Data 类的属性,你需要使用 Jackson 的 XML 注解来配置映射关系。例如,可以使用 @JacksonXmlRootElement 和 @JacksonXmlProperty 注解。

总结

通过配置 spring.jackson.deserialization.fail-on-unknown-properties=true,我们可以有效地防止 Spring Boot 应用在处理 XML 请求时忽略未知属性,从而提高数据的完整性和安全性。这是一种简单而有效的防御性编程实践,建议在所有需要处理 XML 数据的 Spring Boot 应用中启用。

以上就是Spring Boot XML Jackson 校验:禁止忽略未知属性的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/896363.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月28日 17:55:26
下一篇 2025年11月28日 17:56:03

相关推荐

  • 解决Pandas读取ODS/Excel文件时单元格注释与内容混淆问题

    当使用Pandas读取含有单元格注释(如ODS或Excel文件中的“插入注释”)的数据时,可能会遇到注释内容与实际单元格数据被错误拼接的问题,导致数据污染。本教程将深入探讨这一现象,并提供一种实用的后处理方法,通过字符串切片技术精准剥离混淆的注释前缀,从而恢复纯净的单元格内容,确保数据准确性。 理解…

    2025年12月14日
    000
  • 如何使用Python处理CSV和Excel文件?

    答案:Python处理CSV和Excel文件最直接高效的方式是使用pandas库,它提供DataFrame结构简化数据操作。1. 读取文件时,pd.read_csv()和pd.read_excel()可加载数据,配合try-except处理文件缺失或读取异常;支持指定sheet_name读取特定工作…

    2025年12月14日
    000
  • 谈谈你遇到过的最有挑战性的Python项目以及如何解决的。

    答案是通过引入Kafka、Flink、FastAPI等工具重构架构,结合异步编程与分布式计算,最终实现高性能实时日志分析平台。 那个处理海量日志、构建实时分析平台的服务,大概是我在Python项目里啃过的最硬的骨头了。它不仅仅是代码层面的挑战,更多的是对整个系统架构、数据流以及性能边界的全面考验。 …

    2025年12月14日
    000
  • Python中的模块和包有什么区别?

    模块是.py文件,实现代码复用与命名空间隔离;包是含__init__.py的目录,通过层级结构管理模块,解决命名冲突、提升可维护性,支持绝对与相对导入,便于大型项目组织与第三方库分发。 Python中的模块和包,说白了,模块就是你写的一个个 .py 文件,里面装着你的函数、类或者变量,是代码复用的基…

    2025年12月14日
    000
  • 如何实现二叉树的遍历?

    答案是二叉树遍历分为前序、中序、后序和层序四种,分别采用递归或迭代实现,用于系统访问节点,处理空节点需加判断,广泛应用于表达式求值、序列化、LCA查找等场景。 二叉树的遍历,说白了,就是按照某种特定的规则,把树上的每一个节点都“走”一遍,访问一遍。最核心的无非是三种深度优先遍历(前序、中序、后序)和…

    2025年12月14日
    000
  • Flask中的蓝图(Blueprint)有什么作用?

    蓝图是Flask中用于模块化应用的工具,通过将功能拆分为独立组件(如用户认证、商品管理等),实现代码的可维护性和可重用性;每个蓝图拥有自己的路由、模板和静态文件,并可通过URL前缀隔离命名空间,在主应用中注册后生效,避免代码耦合与冲突。 蓝图在Flask中,可以理解为一种组织大型Flask应用的方式…

    2025年12月14日
    000
  • 什么是Celery?如何使用它实现异步任务?

    Celery适用于处理耗时任务,如发送邮件、处理视频等,通过消息队列实现异步执行和负载均衡;使用Flower可监控任务状态,支持重试、错误处理和死信队列应对任务失败。 Celery是一个强大的分布式任务队列,简单来说,它让你能够把一些耗时的操作(比如发送邮件、处理上传的视频)放到后台去执行,而不用阻…

    2025年12月14日
    000
  • 如何实现一个LRU缓存?

    LRU缓存通过哈希表与双向链表结合,实现O(1)读写与淘汰;哈希表快速定位节点,双向链表维护访问顺序,最近访问节点移至头部,超出容量时移除尾部最久未使用节点。 实现LRU缓存的核心思路,在于巧妙地结合哈希表(Hash Map)和双向链表(Doubly Linked List),以达到O(1)时间复杂…

    2025年12月14日
    000
  • 描述符(Descriptor)协议及其应用

    描述符协议是Python中控制属性访问的核心机制,通过实现__get__、__set__和__delete__方法,允许将属性的获取、设置和删除操作委托给专门的对象处理,从而实现类型校验、延迟加载、ORM字段等高级功能,其核心价值在于代码复用、行为封装及与元类协同构建声明式API。 描述符(Desc…

    2025年12月14日
    000
  • 使用 PyPy、Cython 或 Numba 提升代码性能

    PyPy、Cython和Numba是三种提升Python性能的有效工具。PyPy通过JIT编译加速纯Python代码,适合CPU密集型任务且无需修改代码;Cython通过类型声明将Python代码编译为C代码,适用于精细化性能优化和C库集成;Numba利用@jit装饰器对数值计算进行JIT编译,特别…

    2025年12月14日
    000
  • 什么是 WSGI 和 ASGI?它们有何不同?

    ASGI解决了WSGI在实时通信、高并发和I/O效率上的局限,通过异步非阻塞模式支持WebSocket和高并发连接,适用于现代实时Web应用,而WSGI适用于传统同步请求响应场景。 WSGI(Web Server Gateway Interface)和 ASGI(Asynchronous Serve…

    2025年12月14日
    000
  • 如何扁平化一个嵌套列表?

    答案是基于栈的迭代方法最具鲁棒性,它通过显式维护栈结构避免递归深度限制,能稳定处理任意深度的嵌套列表,尤其适合生产环境中深度不确定的复杂数据结构。 扁平化嵌套列表,简单来说,就是把一个包含其他列表的列表,转换成一个只有单一层级元素的列表。这就像把一堆装了小盒子的箱子,最后只留下所有散落的小物件,不再…

    2025年12月14日
    000
  • python -X importtime 性能开销分析与生产环境应用

    本文深入探讨了 python -X importtime 命令的性能开销。通过实际测量,我们发现其引入的额外执行时间通常微乎其微(例如,在测试场景中约为30毫秒),这表明它是一个可接受的工具,适用于在生产环境中监测和优化Python模块导入性能,以识别不必要的导入并提升应用启动速度。 引言:理解 p…

    2025年12月14日
    000
  • 如何在Databricks中探索和使用未明确文档的dbutils对象

    本文旨在解决Databricks环境中遇到未明确文档的dbruntime.dbutils.FileInfo等对象时的困惑。我们将探讨如何利用Python的内省机制(如dir()和type())以及Databricks自身的dbutils.utility.help()功能来发现对象的方法和属性。此外,…

    2025年12月14日
    000
  • 如何理解Python的装饰器并实现一个简单的日志装饰器?

    装饰器是Python中用于扩展函数或类行为的语法糖,通过包装原函数添加日志、性能测试、权限验证等功能而不修改其源码。其核心在于函数是一等对象,可作为参数传递和返回。实现日志装饰器需定义接收函数的外层函数,内部创建包装函数执行额外逻辑后调用原函数,并用 @functools.wraps 保留原函数元信…

    2025年12月14日
    000
  • 使用 Elasticsearch 实现全文搜索功能

    倒排索引是核心。Elasticsearch通过倒排索引实现高效全文搜索,支持分片与副本处理大规模数据,结合分析器、查询DSL及性能优化策略提升搜索效率和准确性。 Elasticsearch实现全文搜索,关键在于其强大的倒排索引机制,能够高效地将文档内容进行分词并建立索引,从而实现快速的搜索。 倒排索…

    2025年12月14日
    000
  • 列表(List)和元组(Tuple)的主要区别是什么?

    列表可变,适合动态数据;元组不可变,确保数据安全,可用于字典键。 列表(List)和元组(Tuple)在Python中都是用来存储一系列有序项目的集合,它们最核心、也最根本的区别在于可变性。简单来说,列表是可变的(mutable),这意味着你可以在创建之后随意添加、删除或修改其中的元素;而元组是不可…

    2025年12月14日
    000
  • 构建可伸缩的Python计算器:动态处理多用户输入

    本教程将指导您如何构建一个可伸伸缩的Python计算器,使其能够根据用户指定数量的数字进行计算,而非局限于固定数量的输入。我们将重点介绍如何利用循环结构动态收集用户输入的多个数值,并通过functools.reduce高效执行聚合运算,从而实现灵活且用户友好的计算功能。 1. 传统计算器的局限性与可…

    2025年12月14日
    000
  • 什么是微服务?如何用Python构建微服务?

    微服务通过拆分应用提升灵活性和扩展性,适合复杂系统与独立团队协作,但带来分布式复杂性。Python凭借FastAPI等框架和丰富生态,能高效构建微服务,适用于IO密集型、快速迭代场景,配合容器化、服务发现、事件驱动等策略应对挑战,是微服务架构中高效且实用的技术选择。 微服务,在我看来,就是把一个大而…

    2025年12月14日
    000
  • python -X importtime 的性能开销分析与生产环境应用实践

    本文深入探讨了 python -X importtime 命令的性能开销,该命令旨在帮助开发者分析Python模块的导入时间。通过实际测试,我们发现其通常只会为程序总执行时间增加数十毫秒的额外开销。鉴于此,在大多数场景下,尤其是在生产环境中用于监控和优化模块导入性能时,这种开销被认为是微不足道的,其…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信