cad打印快捷键命令怎么更改

要更改 Aut%ignore_a_1%CAD 中的打印快捷键命令,请执行以下步骤:进入“选项”对话框,选择“自定义”选项卡。选择“键盘快捷键”,在“类别”中选择“打印”。在“命令”列表中找到要更改的打印命令,并输入新的快捷键组合。保存更改。

cad打印快捷键命令怎么更改

更改 CAD 打印快捷键命令

要更改 AutoCAD 中的打印快捷键命令,请执行以下步骤:

1. 自定义用户界面

在 AutoCAD 中,单击“文件”选项卡 > “选项”。在“选项”对话框中,选择“自定义”选项卡。

2. 选择快捷键

在“自定义”选项卡中,单击“键盘快捷键”。在“类别”下拉列表中,选择“打印”。

3. 找到要更改的快捷键

Noiz Agent Noiz Agent

AI声音创作Agent平台

Noiz Agent 323 查看详情 Noiz Agent 在“命令”列表中,找到要更改的打印命令。例如,“打印”。

4. 更改快捷键

将光标放在“快捷键”列中要更改的键名称上。输入新的快捷键组合。例如,“Ctrl+P”。

5. 保存更改

单击“应用”按钮。单击“确定”关闭“选项”对话框。

示例

要将“打印”命令的快捷键从“Ctrl+B”更改为“Ctrl+P”,请按照以下步骤操作:

打开“选项”对话框。选择“自定义”选项卡。选择“键盘快捷键”。在“类别”下拉列表中选择“打印”。在“命令”列表中找到“打印”。在“快捷键”列中输入“Ctrl+P”。单击“应用”。单击“确定”。

以上就是cad打印快捷键命令怎么更改的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/908772.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月29日 00:51:00
下一篇 2025年11月29日 00:56:03

相关推荐

  • Python中如何处理高维数据—PCA降维实战案例

    pca(主成分分析)是一种通过线性投影降低数据维度的方法,能保留最大方差信息以减少冗余和计算复杂度。1. 其核心思想是提取正交的主成分来捕捉数据主要变化方向;2. 适用于高维场景如图像、文本处理;3. 实战步骤包括:导入数据、标准化、应用pca降维、可视化结果;4. 选择主成分数量可通过解释方差比或…

    2025年12月14日 好文分享
    000
  • 如何使用Python实现GUI图表?Plotly交互

    使用 plotly 做 gui 图表可通过以下步骤实现:1. 安装 plotly 并导入模块,如 plotly.express 或 plotly.graph_objects;2. 准备数据并选择合适的图表类型绘制图形,例如用 px.bar 绘制柱状图;3. 使用 write_html 方法将图表保存…

    2025年12月14日 好文分享
    000
  • 如何使用Python操作MinIO?文件存储解决方案

    minio在企业级应用中扮演多面手角色,常用于大数据和ai/ml工作负载、云原生应用持久化存储、备份与归档、媒体内容管理及私有云存储。1. 作为数据湖存储层,支持spark、tensorflow等框架高性能访问;2. 为kubernetes微服务提供高可用后端存储;3. 支持版本控制与生命周期管理,…

    2025年12月14日 好文分享
    000
  • Python如何分析数据分布—seaborn统计可视化教程

    seaborn 是用于数据分布可视化的强大工具,常用函数包括 histplot、kdeplot、boxplot 等。1. 安装 seaborn 后需导入相关库;2. 使用 histplot 替代旧版 distplot 可绘制直方图并叠加密度曲线;3. kdeplot 专用于绘制平滑密度曲线,支持二维…

    2025年12月14日 好文分享
    000
  • 使用 Polars 高效聚合列表交集

    本文深入探讨了如何使用 Polars 数据框高效地对分组内的字符串列表进行交集操作。面对直接使用 reduce 和 list.set_intersection 的局限性,文章提出了一种基于元素计数和过滤的创新方法。通过计算每个元素在组内出现的唯一行数,并与组的总行数进行比较,我们能准确识别出所有列表…

    2025年12月14日
    000
  • Polars中分组列表列求交集的进阶技巧

    本文探讨了如何在Polars中对包含字符串列表的列进行分组求交集操作。传统的reduce结合列表集合操作往往难以直接实现预期效果。文章提供了一种高效且灵活的解决方案,通过将列表列扁平化,利用行索引和组内计数来识别共同元素,最终重新聚合以获得每个分组内所有列表的交集。此方法避免了复杂的列表操作,转而利…

    2025年12月14日
    000
  • Polars中列表字符串列的交集聚合技巧

    本文详细介绍了如何在Polars中对包含字符串列表的列进行分组聚合,以找出每个组内所有列表的交集元素。通过巧妙地结合explode、with_row_index、over以及条件过滤等操作,我们将复杂的列表交集问题转化为高效的扁平化数据处理,最终实现精确的分组交集聚合。 1. 问题描述与挑战 在数据…

    2025年12月14日
    000
  • Polars 数据帧中按组计算列表交集的实用技巧

    本文探讨了在 Polars 数据帧中,如何高效地对分组内的字符串列表进行交集操作。面对 reduce 函数在处理嵌套列表时的局限性,文章提供了一种创新的解决方案:通过扁平化列表、引入行索引、计算元素在各原始行中出现的唯一性,并结合过滤和重新聚合,实现精确的按组列表交集计算。 引言 在数据处理中,我们…

    2025年12月14日
    000
  • Python怎样开发推荐系统?Surprise库协同过滤

    python开发推荐系统的核心答案是选择合适的协同过滤算法并进行数据处理。首先,使用surprise库内置的knnbasic、svd等算法搭建基础模型;其次,通过pandas进行数据准备,并转换为surprise所需格式;第三,划分训练集和测试集后训练模型;第四,对测试集进行预测并输出结果;第五,使…

    2025年12月14日 好文分享
    000
  • 怎样用Python构建数据看板—Dash动态可视化

    用python做实时更新、交互性强的数据看板推荐使用dash。1.安装依赖:pip install dash pandas plotly;2.基础结构包含layout定义页面内容和graph显示图表;3.通过回调函数实现交互,如根据下拉菜单选择动态更新图表;4.接入数据源可结合pandas从csv或…

    2025年12月14日 好文分享
    000
  • Python如何实现车牌识别?OpenCV预处理技巧

    图像预处理在车牌识别中至关重要,它能显著提升后续识别的准确性和鲁棒性。1. 图像采集与初步处理是基础,获取图片后进行质量评估;2. 图像预处理与车牌定位是关键环节,包括灰度化(cv2.cvtcolor)减少数据量、高斯模糊(cv2.gaussianblur)降噪、canny边缘检测(cv2.cann…

    2025年12月14日 好文分享
    000
  • Python怎样实现植物识别?深度学习模型应用

    植物识别的核心在于利用深度学习模型对图像进行分类,主要通过卷积神经网络(cnn)实现。1.数据收集与预处理是关键难点,需要涵盖不同生长阶段、光照条件和异常状态的大量图像,并辅以专业标注;2.使用预训练模型如resnet或efficientnet进行迁移学习和微调可提升效率,但需注意过拟合、欠拟合及学…

    2025年12月14日 好文分享
    000
  • 批处理文件(.bat)正确执行Python脚本的实用指南

    本文详细介绍了如何通过批处理文件(.bat)正确运行Python脚本。我们将探讨常见的配置错误,如命令语法不当、文件扩展名缺失以及Python解释器路径问题,并提供清晰的解决方案和调试技巧,确保您的Python程序能够顺利地通过批处理自动化执行。 引言:批处理文件与Python脚本的结合 在wind…

    2025年12月14日
    000
  • 解决 Django 自定义用户模型 Mypy 类型不兼容错误:字段重定义策略

    本文探讨了在 Django 项目中,当自定义 User 模型继承自 AbstractUser 并尝试重定义其内置字段(如 email)时,mypy 报告“Incompatible types”错误的解决方案。核心问题在于 AbstractUser 预定义了这些字段的类型签名,导致与重新定义的字段冲突…

    2025年12月14日
    000
  • Django自定义用户模型中重定义字段的Mypy类型兼容性解决方案

    当在Django项目中自定义用户模型并继承自AbstractUser时,若尝试重定义如email等内置字段,Mypy类型检查可能会报告类型不兼容错误。本教程提供了一种鲁棒的解决方案:通过将基类从AbstractUser切换为更底层的AbstractBaseUser并结合PermissionsMixi…

    2025年12月14日
    000
  • Django自定义User模型与Mypy类型检查:解决字段重定义不兼容错误

    本文探讨了在Django项目中,当自定义User模型继承自AbstractUser并尝试重定义内置字段(如email)时,mypy类型检查器报告的“Incompatible types”错误。文章详细分析了错误产生的原因,并提供了一种根本性的解决方案:将自定义User模型从继承AbstractUse…

    2025年12月14日
    000
  • Pandas DataFrame行内组合生成与频次统计教程

    本教程详细介绍了如何利用Pandas、itertools和collections.Counter库,对DataFrame的每一行数据生成所有可能的组合,并高效统计这些组合的出现频率。通过自定义函数和Pandas的apply方法,可以灵活处理行内数据,最终将统计结果转化为易于分析的DataFrame格…

    2025年12月14日
    000
  • 动态扩展SQLite表结构:一种更灵活的数据存储方案

    在数据库应用中,频繁修改表结构通常被认为是不良实践。本文探讨了如何避免动态修改SQLite表结构,并提出一种更灵活的数据存储方案,即通过父/子关系表来存储可变属性,并使用数据透视技术将数据呈现为单一“表”的形式,从而避免频繁的表结构变更,提高数据库的稳定性和可维护性。 避免动态修改表结构的必要性 在…

    2025年12月14日
    000
  • 动态扩展SQLite表结构:避免运行时修改,推荐使用键值对存储

    本文探讨了在运行时动态向SQLite表中添加列的需求,并指出这种做法通常不是最佳实践。文章提出了使用键值对存储方式,将动态属性存储在单独的表中,从而避免频繁修改表结构。同时,介绍了如何使用SQL查询或pandas的pivot()方法将键值对数据转换为更易于分析的表格形式,即交叉表。 在数据库设计中,…

    2025年12月14日
    000
  • 使用Keras数据生成器进行流式训练时张量大小不匹配的错误排查与解决

    本文旨在帮助TensorFlow用户解决在使用Keras数据生成器进行流式训练时遇到的张量大小不匹配问题。通过分析错误信息、理解U-Net结构中的尺寸变化,以及调整图像尺寸,提供了一种有效的解决方案,避免因尺寸不匹配导致的训练中断。 在使用Keras进行深度学习模型训练时,特别是处理大型数据集时,使…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信