元象发布xverse-moe-a4.2b大模型 , 采用业界最前沿的混合专家模型架构 (mixture of experts),激活参数4.2b,效果即可媲美13b模型。该模型全开源,无条件免费商用,让海量中小企业、研究者和开发者可在元象高性能“全家桶”中按需选用,推动低成本部署。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

GPT3、Llama与XVERSE等主流大模型发展遵循规模理论(Scaling Law), 在模型训练和推理的过程中,单次前向、反向计算时,所有参数都被激活,这被称为稠密激活 (densely activated)。 当 模型规模增大时,算力成本 会急剧升高。
随着越来越多的研究人员认为,稀疏激活(sparsely activated)的MoE模型,在增大模型规模时,可不显著增加训练和推理的计算成本,是一种更有效的方法。由于技术较新,目前国内大部分开源模型或学术研究尚未普及。
在元素自研中,使用相同语料训练2.7百万亿token,XVERSE-MoE-A4.2B实际激活参数量4.2B,性能“跳级”超越XVERSE-13B-2,仅计算量,并减少50%训练时间。与多个开源标杆Llama相比,该模型大幅超越Llama2-13B、接近Llama1-65B(下图)。

查看多项权威评测
在开源上,元素大模型”全家桶”持续迭代,将国产开源引领至国际一流水平。应用上,元素发挥AI+3D独特技术独特优势,推出大模型3D空间、AIGC工具等一站式解决方案,赋能文娱、旅游、金融等各行各业,在智能客服、创意体验、提效工具等多场景打造领先用户体验。
MoE技术自研与创新
教育部(MoE)是当前业界最前沿的模型框架,由于技术较新,国内开源模型或学术研究尚未普及。元对象自主研发了MoE的高效训练和推理框架,并在三个方向创新:
性能上,针对MoE架构中独特专家路由和权重计算逻辑,研发一套高效融合算子,显著提升了计算效率;针对MoE模型高显存使用和大通信量挑战,设计出计算、通信和显存卸载的重叠操作,有效提高整体处理吞吐量。
Qoder
阿里巴巴推出的AI编程工具
270 查看详情
架构上,与传统MoE(如Mixtral 8x7B)将每个专家大小等同于标准FFN不同,元象采用更细粒度的专家设计,每个专家大小仅为标准FFN的四分之一,提高了模型灵活性与性能;还将专家分为共享专家(Shared Expert)和非共享专家(Non-shared Expert)两类。共享专家在计算过程中始终保持激活状态,而非共享专家则根据需要选择性激活。这种设计有利于将通用知识压缩至共享专家参数中,减少非共享专家参数间的知识冗余。
训练上,受Switch Transformers、ST-MoE和DeepSeekMoE等启发,元象引入负载均衡损失项,更好均衡专家间的负载;采用路由器z-loss项,确保训练高效和稳定。
架构选择则经过一系列对比实验得出(下图),在 实验3与实验2中,总参数量和激活参数量相同,但前者的细粒度专家设计带来了更高的性能表现。实验4在此基础上,进一步划分共享和非共享两类专家,使得效果显著提升。实验5探索了专家大小等于标准FFN时,引入共享专家的做法,效果不甚理想。

对比实验设计方案
综合试验结果(下图),元象最终采用实验4对应的架构设置。展望未来,新近开源的Google Gemma与X(前Twitter)Grok等项目采用了比标准FFN更大的设定,元象也将在后续继续深入探索相关方向探索研,保持技术引领性。

对比实验效果
免费下载大模型
Hugging Face:https://huggingface.co/xverse/XVERSE-MoE-A4.2BModelScope魔搭:https://modelscope.cn/models/xverse/XVERSE-MoE-A4.2BGithub:https://github.com/xverse-ai/XVERSE-MoE-A4.2B问询发送:opensource@xverse.cn
以上就是元象首个MoE大模型开源:4.2B激活参数,效果堪比13B模型的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/951899.html
微信扫一扫
支付宝扫一扫