前面几篇文章介绍了特征归一化和张量,接下来开始写两篇pytorch简明教程,主要介绍pytorch简单实践。
1、四则运算
import torcha = torch.tensor([2, 3, 4])b = torch.tensor([3, 4, 5])print("a + b: ", (a + b).numpy())print("a - b: ", (a - b).numpy())print("a * b: ", (a * b).numpy())print("a / b: ", (a / b).numpy())
加减乘除就不用多解释了,输出为:
a + b:[5 7 9]a - b:[-1 -1 -1]a * b:[ 6 12 20]a / b:[0.6666667 0.750.8]
2、线性回归
线性回归是找到一条直线尽可能接近已知点,如图:
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜
图1
import torchfrom torch import optimdef build_model1():return torch.nn.Sequential(torch.nn.Linear(1, 1, bias=False))def build_model2():model = torch.nn.Sequential()model.add_module("linear", torch.nn.Linear(1, 1, bias=False))return modeldef train(model, loss, optimizer, x, y):model.train()optimizer.zero_grad()fx = model.forward(x.view(len(x), 1)).squeeze()output = loss.forward(fx, y)output.backward()optimizer.step()return output.item()def main():torch.manual_seed(42)X = torch.linspace(-1, 1, 101, requires_grad=False)Y = 2 * X + torch.randn(X.size()) * 0.33print("X: ", X.numpy(), ", Y: ", Y.numpy())model = build_model1()loss = torch.nn.MSELoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)batch_size = 10for i in range(100):cost = 0.num_batches = len(X) // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer, X[start:end], Y[start:end])print("Epoch = %d, cost = %s" % (i + 1, cost / num_batches))w = next(model.parameters()).dataprint("w = %.2f" % w.numpy())if __name__ == "__main__":main()
(1)先从main函数开始,torch.manual_seed(42)用于设置随机数生成器的种子,以确保在每次运行时生成的随机数序列相同,该函数接受一个整数参数作为种子,可以在训练神经网络等需要随机数的场景中使用,以确保结果的可重复性;
(2)torch.linspace(-1, 1, 101, requires_grad=False)用于在指定的区间内生成一组等间隔的数值,该函数接受三个参数:起始值、终止值和元素个数,返回一个张量,其中包含了指定个数的等间隔数值;
(3)build_model1的内部实现:
torch.nn.Sequential(torch.nn.Linear(1, 1, bias=False))中使用nn.Sequential类的构造函数,将线性层作为参数传递给它,然后返回一个包含该线性层的神经网络模型;build_model2和build_model1功能一样,使用add_module()方法向其中添加了一个名为linear的子模块;
(4)torch.nn.MSELoss(reductinotallow=’mean’)定义损失函数;
使用optim.SGD(model.parameters(), lr=0.01, momentum=0.9)可以实现随机梯度下降(Stochastic Gradient Descent,SGD)优化算法
将训练集通过批量大小拆分,循环100次
(7)接下来是训练函数train,用于训练一个神经网络模型,具体来说,该函数接受以下参数:
model:神经网络模型,通常是一个继承自nn.Module的类的实例;loss:损失函数,用于计算模型的预测值与真实值之间的差异;optimizer:优化器,用于更新模型的参数;x:输入数据,是一个torch.Tensor类型的张量;y:目标数据,是一个torch.Tensor类型的张量;
(8)train是PyTorch训练过程中常用的方法,其步骤如下:
将模型设置为训练模式,即启用dropout和batch normalization等训练时使用的特殊操作;将优化器的梯度缓存清零,以便进行新一轮的梯度计算;将输入数据传递给模型,计算模型的预测值,并将预测值与目标数据传递给损失函数,计算损失值;对损失值进行反向传播,计算模型参数的梯度;使用优化器更新模型参数,以最小化损失值;返回损失值的标量值;
(9)print(“轮次 = %d, 损失值 = %s” % (i + 1, cost / num_batches))最后打印当前训练的轮次和损失值,上述的代码输出如下:
...Epoch = 95, cost = 0.10514946877956391Epoch = 96, cost = 0.10514946877956391Epoch = 97, cost = 0.10514946877956391Epoch = 98, cost = 0.10514946877956391Epoch = 99, cost = 0.10514946877956391Epoch = 100, cost = 0.10514946877956391w = 1.98
3、逻辑回归
逻辑回归即用一根曲线近似表示一堆离散点的轨迹,如图:
博思AIPPT
博思AIPPT来了,海量PPT模板任选,零基础也能快速用AI制作PPT。
117 查看详情
图2
import numpy as npimport torchfrom torch import optimfrom data_util import load_mnistdef build_model(input_dim, output_dim):return torch.nn.Sequential(torch.nn.Linear(input_dim, output_dim, bias=False))def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)n_examples, n_features = trX.size()n_classes = 10model = build_model(n_features, n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)batch_size = 100for i in range(100):cost = 0.num_batches = n_examples // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[start:end], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%"% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()
(1)先从main函数开始,torch.manual_seed(42)上面有介绍,在此略过;
(2)load_mnist是自己实现下载mnist数据集,返回trX和teX是输入数据,trY和teY是标签数据;
(3)build_model内部实现:torch.nn.Sequential(torch.nn.Linear(input_dim, output_dim, bias=False)) 用于构建一个包含一个线性层的神经网络模型,模型的输入特征数量为input_dim,输出特征数量为output_dim,且该线性层没有偏置项,其中n_classes=10表示输出10个分类;重写后:(3)build_model内部实现:使用torch.nn.Sequential(torch.nn.Linear(input_dim, output_dim, bias=False)) 来构建一个包含一个线性层的神经网络模型,该模型的输入特征数量为input_dim,输出特征数量为output_dim,且该线性层没有偏置项。其中n_classes=10表示输出10个分类;
(4)其他的步骤就是定义损失函数,梯度下降优化器,通过batch_size将训练集拆分,循环100次进行train;
使用optim.SGD(model.parameters(), lr=0.01, momentum=0.9)可以实现随机梯度下降(Stochastic Gradient Descent,SGD)优化算法
(6)在每一轮训练结束后,需要执行predict函数来进行预测。该函数接受两个参数model(已经训练好的模型)和teX(需要进行预测的数据)。具体步骤如下:
model.eval()模型设置为评估模式,这意味着模型将不会进行训练,而是仅用于推理;将output转换为NumPy数组,并使用argmax()方法获取每个样本的预测类别;
(7)print(“Epoch %d, cost = %f, acc = %.2f%%” % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))最后打印当前训练的轮次,损失值和acc,上述的代码输出如下(执行很快,但是准确率偏低):
...Epoch 91, cost = 0.252863, acc = 92.52%Epoch 92, cost = 0.252717, acc = 92.51%Epoch 93, cost = 0.252573, acc = 92.50%Epoch 94, cost = 0.252431, acc = 92.50%Epoch 95, cost = 0.252291, acc = 92.52%Epoch 96, cost = 0.252153, acc = 92.52%Epoch 97, cost = 0.252016, acc = 92.51%Epoch 98, cost = 0.251882, acc = 92.51%Epoch 99, cost = 0.251749, acc = 92.51%Epoch 100, cost = 0.251617, acc = 92.51%
4、神经网络
一个经典的LeNet网络,用于对字符进行分类,如图:
图3
定义一个多层的神经网络对数据集的预处理并准备作为网络的输入将数据输入到网络计算网络的损失反向传播,计算梯度
import numpy as npimport torchfrom torch import optimfrom data_util import load_mnistdef build_model(input_dim, output_dim):return torch.nn.Sequential(torch.nn.Linear(input_dim, 512, bias=False),torch.nn.Sigmoid(),torch.nn.Linear(512, output_dim, bias=False))def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)n_examples, n_features = trX.size()n_classes = 10model = build_model(n_features, n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)batch_size = 100for i in range(100):cost = 0.num_batches = n_examples // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[start:end], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%"% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()
(1)以上这段神经网络的代码与逻辑回归没有太多的差异,区别的地方是build_model,这里是构建一个包含两个线性层和一个Sigmoid激活函数的神经网络模型,该模型包含一个输入特征数量为input_dim,输出特征数量为output_dim的线性层,一个Sigmoid激活函数,以及一个输入特征数量为512,输出特征数量为output_dim的线性层;
(2)print(“Epoch %d, cost = %f, acc = %.2f%%” % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))最后打印当前训练的轮次,损失值和acc,上述的代码输入如下(执行时间比逻辑回归要长,但是准确率要高很多):
第91个时期,费用= 0.054484,准确率= 97.58%第92个时期,费用= 0.053753,准确率= 97.56%第93个时期,费用= 0.053036,准确率= 97.60%第94个时期,费用= 0.052332,准确率= 97.61%第95个时期,费用= 0.051641,准确率= 97.63%第96个时期,费用= 0.050964,准确率= 97.66%第97个时期,费用= 0.050298,准确率= 97.66%第98个时期,费用= 0.049645,准确率= 97.67%第99个时期,费用= 0.049003,准确率= 97.67%第100个时期,费用= 0.048373,准确率= 97.68%
以上就是机器学习 | PyTorch简明教程上篇的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/956122.html
微信扫一扫
支付宝扫一扫