清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!

将激活、权重和梯度量化为4位,有望加速神经网络训练。

然而,现有的4位训练方法需要自定义数字格式,而现代硬件不支持这种格式。

最近,清华朱军团队提出了一种使用INT4%ignore_a_1%实现所有矩阵乘法的Transformer训练方法。

使用超低INT4精度进行训练,是非常具有挑战性的。为了实现这一目标,研究者仔细分析了Transformer中激活和梯度的具体结构,为它们提出专用的量化器。

对于前向传播,研究者确定了异常值的挑战,并提出了Hadamard量化器来抑制异常值。

对于后向传播,他们通过提出位分割,来利用梯度的结构稀疏性,并利用分数采样技术来准确量化梯度。

这种新的算法,在自然语言理解、机器翻译和图像分类等广泛任务上,都实现了具有竞争力的准确性。

原型线性算子运算速度比FP16同类算子快2.2倍,训练速度提高了35.1%。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!图片

论文地址:https://arxiv.org/abs/2306.11987

代码地址:https://github.com/xijiu9/Train_Transformers_with_INT4

全新的INT 4训练算法

训练神经网络对计算的要求很高。使用低精度算术进行训练(完全量化训练/FQT)有望提高计算和内存效率。

FQT方法在原来的全精度计算图中添加了一些量化器和反量化器,并用消耗更小的低精度浮点运算,代替了消耗更高的浮点运算。

FQT的研究旨在降低训练数值精度,而不牺牲太多的收敛速度或精度。

所需的数值精度已从FP16降低到FP8、INT32+INT8和INT8+INT5。

FP8训练是在带有Transformer引擎的Nvidia H100 GPU中实现的,加速了大规模Transformer的训练。最近的训练数值精度,已经降到了4位。

然而,这些4位训练方法不能直接用于加速,因为它们需要自定义数字格式,而现代硬件不支持这些格式。

首先,前向传播中的不可微量化器,会使损失情况变得崎岖不平,基于梯度的优化器很容易陷入局部最优。

其次,梯度仅仅以低精度近似计算。这种不精确的梯度会减慢训练过程,甚至导致训练不稳定或发散。

而在这项工作中,研究者为Transformer提出了一种新颖的INT4训练算法。

清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!图片

训练Transformer的所有高消耗的线性运算,都可以写在矩阵乘法(MM)的形式中。

这种MM形式,可以让我们设计更灵活的量化器,通过利用Transformer中激活、权重和梯度的特定结构,就可以更好地近似于FP32矩阵乘法。

随机数值线性代数 (RandNLA) 领域的进步,被这种量化器充分利用。

对于前向传播,研究者发现,激活中的异常值是精度下降的主要原因。

为了抑制异常值,他们提出了Hadamard量化器,它会对激活矩阵的变换版本进行量化。这种变换是块对角Hadamard矩阵,它将离群值中携带的信息传播到矩阵的邻近条目,从而缩小了离群值的数值范围。

对于后向传播,他们利用了激活梯度的结构稀疏性。研究者发现,一些token的梯度非常大。同时,其余大多数token的梯度非常均匀,甚至比较大梯度的量化残差更均匀。

清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!图片

因此,与其计算所有梯度,不如节省计算较大梯度残差的计算资源。

为了利用这种稀疏性,研究者提出了位分割,将每个token的梯度分割为高4位和低4位。

然后,通过杠杆分数采样(leverage score sampling)来选择信息最丰富的梯度,这是RandNLA的一种重要采样技术。

清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!图片

结合前向和后向传播的量化技术,研究者提出了一种使用INT4MM进行Transformer中所有线性运算的算法, 并且评估了在各种任务上训练Transformer的算法,包括自然语言理解、问答、机器翻译和图像分类。

与现有的4位训练算法相比,他们的算法实现了有竞争力的或更高的精度。

此外,这种算法与GPU等当代硬件兼容,因为它不需要FP4或对数格式等自定义的数字格式。

这种原型量化+INT4 MM算子实现,速度比FP16MM基线快2.2倍,并且将训练速度提高了35.1%。

相关工作

完全量化训练

完全量化训练 (FQT) 方法通过将激活、权重和梯度量化为低精度来加速训练,因此训练期间的线性和非线性算子可以用低精度算术来实现。

FQT的研究设计了新颖的数值格式和量化算法,可以更好地逼近全精度张量。

目前的研究前沿是4位FQT。由于梯度的数值范围很大以及从头开始训练量化网络的优化问题,FQT具有挑战性。

由于这些挑战,现有的4位FQT 算法在某些任务上的精度仍然下降了1-2.5%,并且无法支持当代硬件。

清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!图片

其他有效的训练方法

混合专家在不增加训练预算的情况下提高了模型容量。

结构性dropout利用计算有效的方法来正则化模型。高效的注意力降低了计算注意力的二次时间复杂度。

分布式训练系统通过利用更多的计算资源,减少了训练时间。

研究者降低数值精度的工作与这些方向具有正交性。

清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!图片

前向传播

神经网络训练是一个迭代优化过程,通过前向和后向传播计算随机梯度。

研究团队使用4位整数(INT4)算法加速前向和后向传播。

正向传播能以线性和非线性(GeLU, normalization, softmax等)算子的组合来实现。

在我们的训练过程中,我们用INT4算术加速所有线性运算符,并将所有计算量较小的非线性运算符保留在16位浮 点(FP16)格式中。

Transformer中的所有线性运算都可以写成矩阵乘法(MM)的形式。

为了便于表述,本文考虑以下简单矩阵乘法的加速:

清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!图片

这种MM的最主要用例是全连接层。

考虑一个输入形状为(批量大小S,序列长度T,维度D)的Transformer。

全连接层可以表述成上边的公式,其中X是N = STtoken的激活,W是权重矩阵。

对于注意力层,可能需要批量矩阵乘法(BMMS)。

我们提出的技术可以应用于BMMS。

学习步长量化(Learned Step Quantization)

为了加速训练,必须使用整数运算来计算前向传播。

研究人员为此目的,利用学习步长量化器(LSQ)。

LSQ是静态量化,他的量化尺度不依赖于输入的方法,因此比动态方法消耗更小,量化方法,需要在每次迭代时动态计算量化尺度。

激活异常值

简单地将LSQ应用到具有4位激活/权重的FQT会导致精度下降,因为会激活异常值。

清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!图片

如上图所示,激活有一些离群值条目,它们是其规模比其他条目大得多。

不幸的是,Transformers倾向于将信息存储在这些异常值中,而且这样的截断会严重损害准确性。

当训练任务是在一些新的下游任务上微调预训练模型时,异常值问题尤为明显。

因为预训练模型比随机初始化包含更多的异常值 。

Hadamard量化

我们提出了Hadamard量化(HQ)来解决异常值问题。

其主要思想是将另一个具有较少异常值的线性空间中的矩阵进行量化。

激活矩阵中的异常值形成了一个特征结构(feature-wise structure)。

他们通常集中在几个维度上,也就是说X中只有几列显著大于其他列。

哈达玛变换(Hardamand transform)是一个线性变换,它可以将异常值分摊到其他条目中。

后向传播

现在我们考虑使用INT4操作来加速线性层的后向传播。

我们将在本节中讨论激活梯度/权重梯度的计算。

梯度的结构稀疏性

我们注意到,在训练过程中梯度矩阵往往非常稀疏。

而且稀疏性具有这样的结构:

清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!的几行(比如tokens)具有较大的条目,而大多数其他行却接近全零向量。

清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!图片

这种结构稀疏性源于现代神经网络的严重过度参数化。

几乎在整个训练过程中,网络都以超参数化方案运行,除了一些困难的例子之外,它可以很好地适应大多数训练数据。

因此,对于拟合良好的数据点,(激活)梯度将接近于零。

研究人员发现对于预训练任务,例如,经过几个训练周期后,结构稀疏性很快就会出现。

对于微调任务,梯度整个训练过程中始终是稀疏的。

位分割(Bit Splitting)和杠杆分数采样(Leverage Score Sampling)

如何设计梯度量化器,以利用结构稀疏性在反向传播期间准确计算MM呢?

高级的思路是:梯度的许多行都是如此小,对参数梯度影响很小,但浪费了大量的计算量。

另一方面,大行无法用INT4精确表示。

我们放弃掉一些小行并使用节省下来的计算能力来更准确地表示大行。

实验

Shrink.media Shrink.media

Shrink.media是当今市场上最快、最直观、最智能的图像文件缩减工具

Shrink.media 123 查看详情 Shrink.media

研究人员在包括语言模型在内的各种任务上评估我们的INT4训练算法微调、机器翻译和图像分类。

研究人员用CUDA和cutlass执行了他们提出的HQ-MM和LSS-MM算法。

研究人员用INT4实现替换所有浮点线性运算符,但没有简单地使用LSQ来嵌入层,并保持最后一个分类器层的精度。

最后研究人员对所有评估的模型采用了默认架构、优化器、调度器和超参数。

收敛模型精度

研究人员在下表中比较了收敛模型在各种任务上的准确性。

清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!图片

作为对照的方法包括全精度训练(FP)、INT8训练(INT8)、FP4训练(「超低」),使用LSQ进行激活和权重(LSQ+LUQ)的4 位对数量化,以及我们这种利用HQ进行前向传播,利用LSS进行反向传播(HQ+LSS)的算法。

「超低」没有公开的实现,因此我们仅列出了它在机器上的原始论文中的性能翻译任务。

除了大型机器翻译任务和大型视觉Transformer任务之外,我们将每次运行重复三次,并将标准差报告为表中的下标。

研究人员没有进行任何类型的知识蒸馏或数据增强。

消融实验

研究人员进行的消融实验目的是展示前向和后向方法的有效性。

研究不同量化器的前向传播的有效性,我们将后向传播留在FP16中。

结果如下图所示。

清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!图片

计算和内存效率

最后,研究人员通过评估他们的原型实现,展示了他们的方法加速神经网络训练的潜力。

而且他们的实施还没有完全优化。

研究人员也没有将线性算子与非线性和归一化进行融合。

因此,结果不能完全反映INT4训练算法的潜力。

完全优化的实施需要大量工程,超出了我们论文的讨论范围。

结论

研究人员提出了一种对硬件很友好的Transformer INT4的训练方法。

通过分析Transformer中MM的属性,研究人员提出了HQ和LSS方法来量化激活和梯度,同时保持准确性。

在几个重要任务上,我们的方法与现有的INT4方法表现相当,甚至更好。

研究人员的这些工作可能会扩展到除了Transformers之外的其他MM架构中,例如 MLP-Mixer、图神经网络和循环神经网络网络。

这是他们未来的研究方向。

更广泛的影响:研究人员的算法可以提高效率并减少训练神经网络的能源消耗,这有助于减少深度学习造成的碳排放。

但是,高效的训练算法还可能促进那些,对于人来安全存在隐患的大语言模型和恶意人工智能应用程序的开发。

比如,会被用于虚假内容生成的相关模型和应用。

限制:这项工作的主要限制是它只能加速具有较大规模的矩阵乘法(线性层)的大模型,但不能加速卷积层。

而且,所提出的方法还不能很好地适用于OPT-175B等超大模型。

据我们所知,即使是INT8训练对于这些超大型模型来说仍然是尚待解决的问题。

以上就是清华朱军团队新作:使用4位整数训练Transformer,比FP16快2.2倍,提速35.1%,加速AGI到来!的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/974040.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月1日 20:10:46
下一篇 2025年12月1日 20:11:29

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    000
  • 如何用 CSS Paint API 实现倾斜的斑马线间隔圆环?

    实现斑马线边框样式:探究 css paint api 本文将探究如何使用 css paint api 实现倾斜的斑马线间隔圆环。 问题: 给定一个有多个圆圈组成的斑马线图案,如何使用 css 实现倾斜的斑马线间隔圆环? 答案: 立即学习“前端免费学习笔记(深入)”; 使用 css paint api…

    2025年12月24日
    000
  • 如何使用CSS Paint API实现倾斜斑马线间隔圆环边框?

    css实现斑马线边框样式 想定制一个带有倾斜斑马线间隔圆环的边框?现在使用css paint api,定制任何样式都轻而易举。 css paint api 这是一个新的css特性,允许开发人员创建自定义形状和图案,其中包括斑马线样式。 立即学习“前端免费学习笔记(深入)”; 实现倾斜斑马线间隔圆环 …

    2025年12月24日
    100

发表回复

登录后才能评论
关注微信