金融数据
-
Python怎样处理金融数据?pandas分析案例
python 的 pandas 在金融数据分析中非常实用,其核心流程包括:1. 使用 yfinance 等工具获取并加载历史股价数据;2. 进行数据清洗,处理缺失值和异常值,确保时间索引正确;3. 计算技术指标如 20 日移动平均线和每日收益率;4. 结合 matplotlib 实现数据可视化,观察…
-
Sublime高效处理金融数据脚本示例_适用于回测与可视化分析
要高效使用sublime text进行金融数据处理,关键在于配置python环境并结合其轻量高效的编辑功能。具体步骤如下:1. 安装python及必要库,如pandas、numpy、matplotlib、mplfinance等;2. 配置自定义python构建系统,通过json设置指定解释器和编码;…