实战部署:动态时序网络用于端到端检测和跟踪

本文经自动驾驶之心公众号授权转载,转载请联系出处。

相信除了少数自研芯片的大厂,绝大多数自动驾驶公司都会使用英伟达NVIDIA芯片,那就离不开TensorRT. TensorRT是在NVIDIA各种GPU硬件平台下运行的一个C++推理框架。我们利用Pytorch、TF或者其他框架训练好的模型,可以首先转化为onnx格式,再转化为TensorRT的格式,然后利用TensorRT推理引擎去运行我们这个模型,从而提升这个模型在英伟达GPU上运行的速度。

一般来说,onnx和tensorrt仅支持相对比较固定的模型(包括各级的输入输出格式固定,单分支等),最多支持最外层动态输入(导出onnx可以通过设置dynamic_axes参数确定允许动态变化的维度).但活跃在感知算法前沿的小伙伴们都会知道,目前一个重要发展趋势就是端到端(end-2-end),可能涵盖了目标检测,目标跟踪,轨迹预测,决策规划等全部自动驾驶环节,而且必定是前后帧紧密相关的时序模型.实现了目标检测和目标跟踪端到端的mutr3d模型可以作为一个典型例子(模型介绍可参考:)

在MOTR/MUTR3D中,我们将详细解释Label Assignment机制的理论和实例,以实现真正的端到端多目标跟踪。请点击链接阅读更多:https://zhuanlan.zhihu.com/p/609123786

这种模型的转换为TensorRT格式并实现精度对齐,甚至fp16的精度对齐,可能会面临一系列的动态元素,例如多个if-else分支、子网络输入形状的动态变化以及其他需要动态处理的操作和算子等

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

实战部署:动态时序网络用于端到端检测和跟踪图片

MUTR3D架构因为整个过程涉及多个细节,情况各不一样,纵观全网的参考资料,甚至google搜索,也很难找到即插即用的方案,只能通过不断拆分和实验来逐个解决.通过博主一个多月的艰苦探索实践(之前对TensorRT的经验不多,没有摸清它的脾气),动了不少脑筋,也踩了不少坑,最后终于成功转换并实现fp32/fp16精度对齐,且时延相比单纯的目标检测增加非常小。想在此做一个简单的整理,并为大家提供参考(没错,一直写综述,终于写实践了!)

1.数据格式问题

首先是MUTR3D的数据格式比较特殊,都是采用实例形式,这是因为每个query绑定的信息比较多,都打包成实例更容易一对一的存取.但对于部署而言,输入输出只能是tensor,所以首先要对实例数据进行拆解,变成多个tensor变量.并且由于当前帧的query和其他变量是在模型中生成,所以只要输入前序帧保留的query和其他变量即可,在模型中对二者进行拼接.

2.padding解决输入动态shape的问题

对于输入的前序帧query和其他变量,有一个重要问题是shape是不确定的。这是因为MUTR3D仅保留前序帧中曾经检出过目标的query。这个问题还是比较容易解决的,最简单的办法就是padding,即padding到一个固定大小。对于query可以用全0做padding,数量具体多少合适,可以根据自己的数据做实验确定。太少容易漏掉目标,太多比较浪费空间。虽然onnx的dynamic_axes参数可以实现动态输入,但因为涉及到后续transformer计算的size,应该是有问题的。我没有尝试,读者可以试验一下

3.padding对于主transformer中self-attention模块的影响

如果不使用特殊算子,经过填充后就可以成功转换为ONNX和TensorRT。实际上肯定会遇到这种情况,但不在本篇讨论的范围内。例如,在MUTR3D中,当在帧间移动参考点时,使用torch.linalg.inv算子来求伪逆矩阵是不支持的。如果遇到不支持的算子,只能尝试替换,如果不行,就只能在模型外部使用,有经验的人还可以自己编写算子。但由于这一步可以放在模型的预处理和后处理中,我选择将其移到模型外部,编写自己的算子会更困难

成功转换并不意味着一切顺利,答案往往是否定的。我们会发现精度差距非常大。这是因为模型有很多模块,让我们先说第一个原因。在Transformer的自注意力阶段,会进行多个查询之间的信息交互。然而,原始模型只保留了曾经检测到目标的查询(模型中称为活跃查询),应该只有这些查询与当前帧的查询进行交互。而现在,由于填充了许多无效的查询,如果所有查询一起交互,势必会影响结果

解决这个问题受了DN-DETR[1]的启发,那就是使用attention_mask,在nn.MultiheadAttention中对应’attn_mask’参数,作用就是屏蔽掉不需要进行信息交互的query,最初是因为在NLP中每个句子长度不一致而设置的,正好符合我现在的需求,只是需要注意True代表需要屏蔽的query,False代表有效query.

实战部署:动态时序网络用于端到端检测和跟踪图片

attention mask示意图因为计算attention_mask逻辑稍微有点复杂,很多操作转换TensorRT可能出现新问题,所以也应该在模型外计算好之后作为一个输入变量输入模型,再传递给transformer.以下是示例代码:

data['attn_masks'] = attn_masks_init.clone().to(device)data['attn_masks'][active_prev_num:max_num, :] = Truedata['attn_masks'][:, active_prev_num:max_num] = True[1]DN-DETR: Accelerate DETR Training by Introducing Query DeNoising

4.padding对于QIM的影响

QIM是MUTR3D中对transformer输出的query进行的后处理模块,主要分三步,第一步是筛选active query,即在当前帧中检测出目标的query,依据是obj_idxs是否>=0(在训练阶段还包括随机drop query,和随机加入fp query,推理阶段不涉及),第二步是update query,即针对第一步中筛选的query做一个更新,包括query 输出值的self-attention,ffn,和与query输入值的shortcut连接,第三步是将更新的query与重新生成的初始query拼接,作为下一帧的输入.可见第二步中仍然存在我们在第3点中提到的问题,即self-attention不做全部query之间的交互,而是只进行active query之间的信息交互.所以在这里又要使用attention mask.

虽然QIM模块是可选的,但实验表明对模型精度的提升是有帮助的.如果要使用QIM的话,这个attention mask必须在模型里计算,因为模型外部无法得知当前帧的检测结果.由于tensorRT的语法限制,很多操作要么会转换不成功,要么不会得到想要的结果,经过多次实验,结论是直接用索引切片赋值(类似于第3点的示例代码)操作一般不支持,最好用矩阵计算的方式,但涉及计算必须将attention mask的bool类型转为float类型,最后attention mask需要转回bool类型才能使用.以下是实例代码:

obj_mask = (obj_idxs >= 0).float()attn_mask = torch.matmul(obj_mask.unsqueeze(-1), obj_mask.unsqueeze(0)).bool()attn_mask = ~attn_mask

5.padding对于输出结果的影响

进行完以上四点,我们基本可以保证模型转换tensorRT的逻辑没有问题,但输出结果经过多次验证后某些帧仍然存在问题一度让我很不解.但一帧帧从数据上分析,就会发现竟然在某些帧padding的query虽然没有参与transformer计算,却可以得到一个较高的score,进而得到错误的结果.这种情况在数据量大的情况下确实是可能的,因为padding的query只是初始值是0,reference points也是[0,0],与其他随机初始化的query进行了同样的操作.但由于毕竟是padding的query,我们并不打算使用他们的结果,所以必须要进行过滤.

如何过滤填充查询的结果呢?填充查询的标志只有它们的索引位置,其他信息都没有特异性。而索引信息实际上记录在第3点使用的注意力掩码中,这个注意力掩码是从模型外部传入的。这个掩码是二维的,我们可以使用其中的一维(任意一行或任意一列),将填充的track_score直接置为0。请记住仍然要注意第4步的注意事项,即尽量使用矩阵计算来代替索引切片赋值,并且计算必须转换为float类型。以下是代码示例:

mask = (~attention_mask[-1]).float()track_scores = track_scores * mask

6.如何动态更新track_id

除了模型主体,其实还有非常关键的一步,就是动态更新track_id,这也是模型能做到端到端的一个重要因素.但在原模型中更新track_id的方式是一个相对复杂的循环判断, 即高于score thresh且是新目标的,赋一个新的obj_idx, 低于filter score thresh且是老目标的,对应的disappear time + 1,如果disappear time超过miss_tolerance, 对应的obj idx置为-1,即丢弃这个目标.

我们知道tensorRT是不支持if-else多分支语句的(好吧,我一开始并不知道),这是个头疼的问题.如果将更新track_id也放到模型外部,不仅影响了模型端到端的架构,而且也会导致无法使用QIM,因为QIM筛选query的依据是更新后的track_id.所以绞尽脑汁也要把更新track_id放到模型里面去.

ImagetoCartoon ImagetoCartoon

一款在线AI漫画家,可以将人脸转换成卡通或动漫风格的图像。

ImagetoCartoon 106 查看详情 ImagetoCartoon

再次发挥聪明才智(快用完了),if-else语句也不是不能代替的,比如使用mask并行操作.例如将条件转换为mask(例如tensor[mask] = 0).这里面值得庆幸的是虽然第4,第5点提到tensorRT不支持索引切片赋值操作,但是却支持bool索引赋值,猜测可能因为切片操作隐性改变了tensor的shape吧.但经过多次实验,也不是所有情况下的bool索引赋值都支持的,出现了以下几种头疼的情况:

需要重新写的内容是:赋值的值必须是一个,不能是多个。例如,当我更新新出现的目标时,我不会统一赋值为某个ID,而是需要为每个目标赋予连续递增的ID。我想到的解决办法是先统一赋值为一个比较大且不可能出现的数字,比如1000,以避免与之前的ID重复,然后在后续处理中将1000替换为唯一且连续递增的数字。(我真是个天才)

如果要进行递增操作(+=1),只能使用简单的掩码,即不能涉及复杂的逻辑计算。例如,对disappear_time的更新,本来需要同时判断obj_idx >= 0且track_scores = 0这个条件。虽然看似不合理,但经过分析发现,即使将obj_idx=-1的非目标的disappear_time递增,因为后续这些目标并不会被选入,所以对整体逻辑影响不大

综上,最后的动态更新track_id示例代码如下,在后处理环节要记得替换obj_idx为1000的数值.:

def update_trackid(self, track_scores, disappear_time, obj_idxs):disappear_time[track_scores >= 0.4] = 0obj_idxs[(obj_idxs == -1) & (track_scores >= 0.4)] = 1000disappear_time[track_scores  5] = -1

至此模型部分的处理就全部结束了,是不是比较崩溃,但是没办法,部署端到端模型肯定比一般模型要复杂很多.模型最后会输出固定shape的结果,还需要在后处理阶段根据obj_idx是否>0判断需要保留到下一帧的query,再根据track_scores是否>filter score thresh判断当前最终的输出结果.总体来看,需要在模型外进行的操作只有三步:帧间移动reference_points,对输入query进行padding,对输出结果进行过滤和转换格式,基本上实现了端到端的目标检测+目标跟踪.

需要重新写的内容是:以上六点的操作顺序需要说明一下。我在这里按照问题分类来写,实际上可能的顺序是1->2->3->5->6->4,因为第五点和第六点是使用QIM的前提,它们之间也存在依赖关系。另外一个问题是我没有使用memory bank,即时序融合的模块,因为经过实验发现这个模块的提升效果并不明显,而且对于端到端跟踪机制来说,已经天然地使用了时序融合(因为直接将前序帧的查询信息带到下一帧),所以时序融合并不是非常必要

好了,现在我们可以对比TensorRT的推理结果和PyTorch的推理结果,会发现在FP32精度下可以实现精度对齐,非常棒!但是,如果需要转换为FP16(可以大幅降低部署时延),第一次推理会发现结果完全变成None(再次崩溃)。导致FP16结果为None一般都是因为出现数据溢出,即数值大小超限(FP16最大支持范围是-65504~+65504)。如果你的代码使用了一些特殊的操作,或者你的数据天然数值较大,例如内外参、姿态等数据很可能超限,一般可以通过缩放等方式解决。这里再说一下和我以上6点相关的一个原因:

7.使用attention_mask导致的fp16结果为none的问题

这个问题非常隐蔽,因为问题隐藏在torch.nn.MultiheadAttention源码中,具体在torch.nn.functional.py文件中,有以下几句:

if attn_mask is not None and attn_mask.dtype == torch.bool:new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)new_attn_mask.masked_fill_(attn_mask, float("-inf"))attn_mask = new_attn_mask

可以看到,这一步操作是对attn_mask中值为True的元素用float(“-inf”)填充,这也是attention mask的原理所在,也就是值为1的位置会被替换成负无穷,这样在后续的softmax操作中,这个位置的输入会被加上负无穷,输出的结果就可以忽略不记,不会对其他位置的输出产生影响.大家也能看出来了,这个float(“-inf”)是fp32精度,肯定超过fp16支持的范围了,所以导致结果为none.我在这里把它替换为fp16支持的下限,即-65504,转fp16就正常了,虽然说一般不要修改源码,但这个确实没办法.不要问我怎么知道这么隐蔽的问题的,因为不是我一个人想到的.但如果使用attention_mask之前仔细研究了原理,想到也不难.

好的,以下是我在端到端模型部署方面的全部经验分享,我保证这不是标题党。由于我对tensorRT的接触时间不长,所以可能有些描述不准确的地方

实战部署:动态时序网络用于端到端检测和跟踪

需要进行改写的内容是:原文链接:https://mp.weixin.qq.com/s/EcmNH2to2vXBsdnNvpo0xw

以上就是实战部署:动态时序网络用于端到端检测和跟踪的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1049713.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月2日 09:57:25
下一篇 2025年12月2日 09:57:47

相关推荐

  • 怎样用免费工具美化PPT_免费美化PPT的实用方法分享

    利用KIMI智能助手可免费将PPT美化为科技感风格,但需核对文字准确性;2. 天工AI擅长优化内容结构,提升逻辑性,适合高质量内容需求;3. SlidesAI支持语音输入与自动排版,操作便捷,利于紧急场景;4. Prezo提供多种模板,自动生成图文并茂幻灯片,适合学生与初创团队。 如果您有一份内容完…

    2025年12月6日 软件教程
    000
  • Pages怎么协作编辑同一文档 Pages多人实时协作的流程

    首先启用Pages共享功能,点击右上角共享按钮并选择“添加协作者”,设置为可编辑并生成链接;接着复制链接通过邮件或社交软件发送给成员,确保其使用Apple ID登录iCloud后即可加入编辑;也可直接在共享菜单中输入邮箱地址定向邀请,设定编辑权限后发送;最后在共享面板中管理协作者权限,查看实时在线状…

    2025年12月6日 软件教程
    100
  • REDMI K90系列正式发布,售价2599元起!

    10月23日,redmi k90系列正式亮相,推出redmi k90与redmi k90 pro max两款新机。其中,redmi k90搭载骁龙8至尊版处理器、7100mah大电池及100w有线快充等多项旗舰配置,起售价为2599元,官方称其为k系列迄今为止最完整的标准版本。 图源:REDMI红米…

    2025年12月6日 行业动态
    200
  • Linux中如何安装Nginx服务_Linux安装Nginx服务的完整指南

    首先更新系统软件包,然后通过对应包管理器安装Nginx,启动并启用服务,开放防火墙端口,最后验证欢迎页显示以确认安装成功。 在Linux系统中安装Nginx服务是搭建Web服务器的第一步。Nginx以高性能、低资源消耗和良好的并发处理能力著称,广泛用于静态内容服务、反向代理和负载均衡。以下是在主流L…

    2025年12月6日 运维
    000
  • Linux journalctl与systemctl status结合分析

    先看 systemctl status 确认服务状态,再用 journalctl 查看详细日志。例如 nginx 启动失败时,systemctl status 显示 Active: failed,journalctl -u nginx 发现端口 80 被占用,结合两者可快速定位问题根源。 在 Lin…

    2025年12月6日 运维
    100
  • 华为新机发布计划曝光:Pura 90系列或明年4月登场

    近日,有数码博主透露了华为2025年至2026年的新品规划,其中pura 90系列预计在2026年4月发布,有望成为华为新一代影像旗舰。根据路线图,华为将在2025年底至2026年陆续推出mate 80系列、折叠屏新机mate x7系列以及nova 15系列,而pura 90系列则将成为2026年上…

    2025年12月6日 行业动态
    100
  • Linux如何优化系统性能_Linux系统性能优化的实用方法

    优化Linux性能需先监控资源使用,通过top、vmstat等命令分析负载,再调整内核参数如TCP优化与内存交换,结合关闭无用服务、选用合适文件系统与I/O调度器,持续按需调优以提升系统效率。 Linux系统性能优化的核心在于合理配置资源、监控系统状态并及时调整瓶颈环节。通过一系列实用手段,可以显著…

    2025年12月6日 运维
    000
  • 曝小米17 Air正在筹备 超薄机身+2亿像素+eSIM技术?

    近日,手机行业再度掀起超薄机型热潮,三星与苹果已相继推出s25 edge与iphone air等轻薄旗舰,引发市场高度关注。在此趋势下,多家国产厂商被曝正积极布局相关技术,加速抢占这一细分赛道。据业内人士消息,小米的超薄旗舰机型小米17 air已进入筹备阶段。 小米17 Pro 爆料显示,小米正在评…

    2025年12月6日 行业动态
    000
  • 「世纪传奇刀片新篇」飞利浦影音双11声宴开启

    百年声学基因碰撞前沿科技,一场有关声音美学与设计美学的影音狂欢已悄然引爆2025“双十一”! 当绝大多数影音数码品牌还在价格战中挣扎时,飞利浦影音已然开启了一场跨越百年的“声”活革命。作为拥有深厚技术底蕴的音频巨头,飞利浦影音及配件此次“双十一”精准聚焦“传承经典”与“设计美学”两大核心,为热爱生活…

    2025年12月6日 行业动态
    000
  • 荣耀手表5Pro 10月23日正式开启首销国补优惠价1359.2元起售

    荣耀手表5pro自9月25日开启全渠道预售以来,市场热度持续攀升,上市初期便迎来抢购热潮,一度出现全线售罄、供不应求的局面。10月23日,荣耀手表5pro正式迎来首销,提供蓝牙版与esim版两种选择。其中,蓝牙版本的攀登者(橙色)、开拓者(黑色)和远航者(灰色)首销期间享受国补优惠价,到手价为135…

    2025年12月6日 行业动态
    000
  • 环境搭建docker环境下如何快速部署mysql集群

    使用Docker Compose部署MySQL主从集群,通过配置文件设置server-id和binlog,编写docker-compose.yml定义主从服务并组网,启动后创建复制用户并配置主从连接,最后验证数据同步是否正常。 在Docker环境下快速部署MySQL集群,关键在于合理使用Docker…

    2025年12月6日 数据库
    000
  • 微信如何开启翻译功能_微信翻译功能的语言切换

    首先开启微信翻译功能,长按外文消息选择翻译并设置“始终翻译此人消息”;接着在“我-设置-通用-多语言”中切换目标语言以优化翻译方向;若效果不佳,可复制内容至第三方工具如Google翻译进行高精度处理。 如果您在使用微信与不同语言的联系人沟通时,发现聊天内容无法理解,则可能是未开启微信内置的翻译功能或…

    2025年12月6日 软件教程
    000
  • Xbox删忍龙美女角色 斯宾塞致敬板垣伴信被喷太虚伪

    近日,海外游戏推主@HaileyEira公开发表言论,批评Xbox负责人菲尔·斯宾塞不配向已故的《死或生》与《忍者龙剑传》系列之父板垣伴信致敬。她指出,Xbox并未真正尊重这位传奇制作人的创作遗产,反而在宣传相关作品时对内容进行了审查和删减。 所涉游戏为年初推出的《忍者龙剑传2:黑之章》,该作采用虚…

    2025年12月6日 游戏教程
    000
  • 如何在mysql中分析索引未命中问题

    答案是通过EXPLAIN分析执行计划,检查索引使用情况,优化WHERE条件写法,避免索引失效,结合慢查询日志定位问题SQL,并根据查询模式合理设计索引。 当 MySQL 查询性能下降,很可能是索引未命中导致的。要分析这类问题,核心是理解查询执行计划、检查索引设计是否合理,并结合实际数据访问模式进行优…

    2025年12月6日 数据库
    000
  • VSCode入门:基础配置与插件推荐

    刚用VSCode,别急着装一堆东西。先把基础设好,再按需求加插件,效率高还不卡。核心就三步:界面顺手、主题舒服、功能够用。 设置中文和常用界面 打开软件,左边活动栏有五个图标,点最下面那个“扩展”。搜索“Chinese”,装上官方出的“Chinese (Simplified) Language Pa…

    2025年12月6日 开发工具
    000
  • php查询代码怎么写_php数据库查询语句编写技巧与实例

    在PHP中进行数据库查询,最常用的方式是使用MySQLi或PDO扩展连接MySQL数据库。下面介绍基本的查询代码写法、编写技巧以及实用示例,帮助你高效安全地操作数据库。 1. 使用MySQLi进行查询(面向对象方式) 这是较为推荐的方式,适合大多数中小型项目。 // 创建连接$host = ‘loc…

    2025年12月6日 后端开发
    000
  • VSCode的悬浮提示信息可以自定义吗?

    可以通过JSDoc、docstring和扩展插件自定义VSCode悬浮提示内容,如1. 添加JSDoc或Python docstring增强信息;2. 调整hover延迟与粘性等显示行为;3. 使用支持自定义提示的扩展或开发hover provider实现深度定制,但无法直接修改HTML结构或手动编…

    2025年12月6日 开发工具
    000
  • 重现iPhone X颠覆性时刻!苹果2027年跳过19命名iPhone 20

    10月23日,有消息称,苹果或将再次调整iPhone的发布节奏,考虑跳过“iPhone 19”,并于2027年直接推出“iPhone 20”系列。 此举据传是为了庆祝初代iPhone发布二十周年,同时开启新一轮的设计革新,目标是复刻2017年iPhone X带来的划时代变革。 据悉,苹果或将告别长期…

    2025年12月6日 手机教程
    000
  • 如何在mysql中使用索引提高查询效率

    合理创建索引可显著提升MySQL查询效率,应优先为WHERE、JOIN、ORDER BY等高频字段建立B-Tree复合索引,如CREATE INDEX idx_status_created ON users(status, created_at, id),并遵循最左前缀原则;避免在索引列使用函数或前…

    2025年12月6日 数据库
    000
  • Linux命令行中free命令的使用方法

    free命令用于查看Linux内存使用情况,包括总内存、已用、空闲、共享、缓存及可用内存;使用-h可读格式显示,-s周期刷新,-c限制次数,-t显示总计,帮助快速评估系统内存状态。 free命令用于显示Linux系统中内存和交换空间的使用情况,包括物理内存、已用内存、空闲内存以及缓存和缓冲区的占用情…

    2025年12月6日 运维
    000

发表回复

登录后才能评论
关注微信