Pydantic • 处理验证和清理数据

pydantic • 处理验证和清理数据

自从我开始编程以来,我主要使用结构化和过程范例,因为我的任务需要更实用和直接的解决方案。在处理数据提取时,我必须转向新的范式才能实现更有组织的代码。

这种必要性的一个例子是在抓取任务期间,当我需要捕获最初属于我知道如何处理的类型的特定数据时,但突然间,它在捕获过程中要么不存在,要么以不同的类型出现。

因此,我不得不添加一些 if’stry 和 catch 块来检查数据是 int 还是 string …后来发现什么都没有捕获,没有等等。有了字典,我最终保存了在以下情况下一些无趣的“默认数据”:

data.get(values, 0)

好吧,令人困惑的错误消息肯定不能再出现了。

这就是python 的动态性。变量可以随时更改其类型,直到您需要更清楚地了解正在使用的类型为止。然后突然出现一堆信息,现在我正在阅读如何处理数据验证,ide 可以帮助我处理类型提示和有趣的 pydantic 库。

现在,在数据操作等任务中,使用新范例,我可以拥有显式声明其类型的对象,以及允许验证这些类型的库。如果出现问题,通过查看更好描述的错误信息来调试会更容易。

派丹提克

所以,这是 pydantic 文档。有更多问题,咨询一下总是好的。

基本上,正如我们所知,我们从以下开始:

pip install pydantic

然后,假设我们想要从包含这些电子邮件的源中捕获电子邮件,其中大多数看起来像这样:“xxxx@xxxx.com”。但有时,它可能是这样的:“xxxx@”或“xxxx”。我们对应该捕获的电子邮件格式毫无疑问,因此我们将使用 pydantic 验证此电子邮件字符串:

from pydantic import basemodel, emailstrclass consumer(basemodel):    email: emailstr    account_id: intconsumer = consumer(email="teste@teste", account_id=12345)print(consumer)

请注意,我使用了可选依赖项“email-validator”,安装方式为:pip install pydantic[email]。正如我们所知,当您运行代码时,错误将是无效的电子邮件格式“teste@teste”:

traceback (most recent call last):  ...    consumer = consumer(email="teste@teste", account_id=12345)               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  ...: 1 validation error for consumeremail  value is not a valid email address: the part after the @-sign is not valid. it should have a period. [type=value_error, input_value='teste@teste', input_type=str]

使用可选依赖项来验证数据很有趣,就像创建我们自己的验证一样,pydantic 通过 field_validator 允许这样做。因此,我们知道 account_id 必须为正且大于零。如果不同,pydantic 警告存在异常(值错误)会很有趣。代码将是:

from pydantic import basemodel, emailstr, field_validatorclass consumer(basemodel):    email: emailstr    account_id: int    @field_validator("account_id")    def validate_account_id(cls, value):        """custom field validation"""        if value <= 0:            raise valueerror(f"account_id must be positive: {value}")        return valueconsumer = consumer(email="teste@teste.com", account_id=0)print(consumer)
$ python capture_emails.pytraceback (most recent call last):...    consumer = consumer(email="teste@teste.com", account_id=0)               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^...: 1 validation error for consumeraccount_id  value error, account_id must be positive: 0 [type=value_error, input_value=0, input_type=int]    for further information visit https://errors.pydantic.dev/2.8/v/value_error

现在,使用正确的值运行代码:

from pydantic import basemodel, emailstr, field_validatorclass consumer(basemodel):    email: emailstr    account_id: int    @field_validator("account_id")    def validate_account_id(cls, value):        """custom field validation"""        if value <= 0:            raise valueerror(f"account_id must be positive: {value}")        return valueconsumer = consumer(email="teste@teste.com", account_id=12345)print(consumer)
$ python capture_emails.pyemail='teste@teste.com' account_id=12345

对吗?!

我还阅读了一些有关本机“dataclasses”模块的内容,该模块更简单一些,并且与 pydantic 有一些相似之处。然而,pydantic 更适合处理需要验证的更复杂的数据模型。 dataclasses 原生包含在 python 中,而 pydantic 还没有——至少现在还没有。

以上就是Pydantic • 处理验证和清理数据的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1349026.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月13日 12:31:19
下一篇 2025年12月13日 12:31:29

相关推荐

发表回复

登录后才能评论
关注微信