
gpu训练模型时cpu利用率高的原因及解决方法
在使用gpu训练模型时,遇到cpu利用率过高而gpu利用率过低的情况,可能存在以下几个原因:
1. gpu配置错误
检查cuda和pytorch版本是否匹配,并运行以下代码验证gpu是否配置成功:
import torchprint(torch.cuda.is_available())
如果输出为false,则表明gpu未配置好。
2. 未指定gpu设备
确保在代码中指定使用gpu设备,例如:
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'from torchvision.models import ResNetResNet(......).to(device)
3. 代码自身问题
如果上述步骤均无问题,则可能是代码本身导致cpu利用率过高。考虑代码中是否开启了多线程或多进程,这些操作会增加cpu占用率。尝试减少这些并行操作的线程或进程数量以降低cpu占用率。
深度学习模型训练过程中cpu占用率较高是比较常见的。为了提高gpu利用率,可以尝试增大batch_size以增加gpu显存占用率。
以上就是GPU训练模型时,CPU利用率过高怎么办?的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1350425.html
微信扫一扫
支付宝扫一扫