Python如何分析数据相关性—热力图与相关系数矩阵

要分析数据相关性,最常用且直观的方式是使用 pandas 计算相关系数矩阵并用 seaborn 绘制热力图。1. 首先加载结构化数据并调用 df.corr() 得到皮尔逊相关系数矩阵,其值范围为 -1 到 1,分别表示负相关、无相关和正相关;2. 然后使用 seaborn.heatmap() 将矩阵可视化,通过颜色深浅快速识别强相关变量,参数 annot、cmap 和 fmt 可提升可读性;3. 实际应用中需注意变量过多导致图表密集、非数值列或缺失值导致的 nan 结果,以及根据数据特性选择合适的相关系数方法如 pearson、kendall 或 spearman。

Python如何分析数据相关性—热力图与相关系数矩阵

分析数据相关性是数据探索的重要一步,特别是在做特征选择或者理解变量间关系时。Python 提供了多种工具可以方便地实现这一点,其中最常用的就是热力图(Heatmap)和相关系数矩阵(Correlation Matrix)。下面直接说重点:使用 Pandas 计算相关系数矩阵,再用 Seaborn 绘制热力图,是最直观、高效的方式。

Python如何分析数据相关性—热力图与相关系数矩阵

1. 准备数据与计算相关系数矩阵

大多数情况下,我们处理的是结构化数据,比如 CSV 或 Excel 文件。加载之后,可以用 pandas.DataFrame.corr() 方法快速得到相关系数矩阵。

Python如何分析数据相关性—热力图与相关系数矩阵

import pandas as pddf = pd.read_csv('your_data.csv')corr_matrix = df.corr()

这个矩阵里的每个值代表两个变量之间的皮尔逊相关系数,范围在 -1 到 1 之间:

立即学习“Python免费学习笔记(深入)”;

接近 1:正相关,一个变量增大另一个也增大 接近 -1:负相关,一个变量增大另一个减小 接近 0:几乎没有线性关系

注意:corr() 默认只计算数值列之间的相关性,类别型字段会被忽略。

2. 用热力图可视化相关性

光看数字矩阵不太直观,这时候就可以用 Seaborn 的热力图来辅助理解:

import seaborn as snsimport matplotlib.pyplot as pltsns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')plt.show()

几个关键参数说明:

annot=True:在图中显示具体数值,方便查看cmap='coolwarm':颜色映射方案,红暖蓝冷,视觉上对比明显fmt='.2f':保留两位小数,整洁好看

热力图的颜色深浅能一眼看出哪些变量之间相关性强,特别适合在建模前快速筛选特征。

3. 常见问题与注意事项

有时候你可能会遇到以下几种情况:

热力图太密集看不清:可能是变量太多,建议只绘制部分字段,或使用 mask 隐藏重复的对称部分。相关系数全是 NaN:检查是否所有列都是非数值类型,或者有大量缺失值。想换其他相关系数方法df.corr(method=...) 支持 pearson(默认)、kendallspearman

如果你的数据集变量较多,可以考虑先做一次初步筛选,再画图,这样更清晰也更容易发现模式。

基本上就这些。整个流程不复杂,但容易忽略细节,比如数据清洗、相关性方法的选择等。只要注意这些点,就能轻松完成数据相关性的初步分析。

以上就是Python如何分析数据相关性—热力图与相关系数矩阵的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1363709.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 03:34:36
下一篇 2025年12月14日 03:34:48

相关推荐

  • 如何用Python处理时间序列数据?resample重采样

    使用pandas的resample方法进行时间序列数据处理及聚合的核心步骤如下:1. 确保dataframe或series具有datetimeindex,这是resample操作的前提;2. 使用resample(‘freq’)指定目标频率,如’d’(…

    2025年12月14日 好文分享
    000
  • Python怎样处理文本数据?字符串操作完整指南

    python处理文本数据的核心在于字符串操作与编码解码。1. 字符串可通过单引号、双引号或三引号定义,三引号适用于多行文本;2. 支持索引与切片操作,便于访问和反转字符序列;3. 提供拼接(+)、重复(*)及高效拼接的join()方法;4. 内置丰富字符串方法,如split()分割、replace(…

    2025年12月14日 好文分享
    000
  • 在Django模板中安全地将后端变量传递给外部JavaScript

    本文旨在提供两种在Django模板中将后端Python变量安全、高效地传递给外部JavaScript文件的方法:通过内联脚本声明变量和利用HTML数据属性。文章将详细阐述这两种方法的实现原理、具体代码示例,并探讨各自的适用场景、潜在问题及重要注意事项,包括数据类型处理、安全性(XSS防护)和脚本加载…

    2025年12月14日
    000
  • SQLite多列组合去重与关联数据提取教程

    本教程旨在解决SQLite中如何实现多列组合的唯一性筛选,并为每个唯一组合提取关联数据的问题。我们将探讨传统DISTINCT关键字的局限性,并详细介绍如何利用GROUP BY子句结合聚合函数来高效、准确地实现这一目标,同时提供清晰的代码示例和注意事项。 1. 问题背景与DISTINCT的局限性 在数…

    2025年12月14日
    000
  • Python中如何使用迭代器?生成器应用解析

    迭代器是实现__iter__()和__next__()方法的对象,用于按需遍历数据;生成器是使用yield的特殊迭代器,能延迟计算节省内存。1.迭代器通过next()逐个获取元素,如列表需用iter()转换;2.自定义迭代器需定义类并实现两个方法,如mycounter控制遍历状态;3.生成器用yie…

    2025年12月14日 好文分享
    000
  • 掌握Pandas cut 函数:实现自定义整数区间分箱与频率统计

    本文深入探讨了Pandas cut 函数在数据分箱中的应用,特别聚焦于如何解决其默认浮点区间输出不易理解的问题。通过引入 pd.interval_range,教程详细阐述了如何精确定义自定义的整数分箱区间,并结合 groupby 方法高效生成频率分布表。文章提供清晰的代码示例和关键注意事项,旨在帮助…

    2025年12月14日
    000
  • Python print() 函数的底层机制与硬件交互解析

    Python的print()函数并非直接与硬件交互,而是通过多层抽象实现文本输出。它首先将数据传递给由C语言实现的Python解释器,解释器进而利用操作系统的标准输出流(stdout)。操作系统负责管理这些流,并通过设备驱动程序将数据发送至显示硬件,最终呈现在屏幕上。这一过程体现了从高级语言到操作系…

    2025年12月14日
    000
  • 深入理解 Python print() 函数:从代码到屏幕的硬件交互之旅

    Python中的print()函数并非直接与硬件交互。其输出过程涉及多层抽象:Python解释器将数据传递给操作系统,操作系统通过标准输出流和设备驱动程序最终将文本渲染到屏幕上。理解这一过程需要深入探究解释器、操作系统和底层C语言I/O机制的协同工作。 当我们执行一行简单的Python代码,例如 p…

    2025年12月14日
    000
  • SQLite:使用 GROUP BY 检索多列的唯一组合及关联数据

    本文探讨了在 SQLite 中如何高效地查询多列的唯一组合,并为每个组合检索关联数据。针对用户尝试使用 DISTINCT 关键字但遇到错误的情况,教程详细阐述了 GROUP BY 子句的正确用法,并结合聚合函数如 MIN(),演示了如何从每个唯一组合中选择特定的行数据,从而避免重复,实现类似 Pyt…

    2025年12月14日
    000
  • 深入解析Python print() 函数:从高级抽象到硬件交互的旅程

    本文深入探讨Python print() 函数在硬件层面的运作机制。它揭示了print()如何通过Python解释器将文本数据传递给操作系统管理的标准输出流(stdout),进而依赖底层C语言实现与操作系统内核及设备驱动程序交互,最终将字符呈现在屏幕上,而非直接与硬件通信。 Python的print…

    2025年12月14日
    000
  • Python怎样实现网页截图?selenium无头模式

    python结合selenium无头模式实现网页截图的核心步骤是:1. 安装selenium库并下载对应浏览器的webdriver;2. 导入webdriver和options模块;3. 创建chromeoptions对象并添加–headless、–disable-gpu、&…

    2025年12月14日 好文分享
    000
  • 怎样用Python实现数据标准化?sklearn预处理指南

    数据标准化是机器学习中不可或缺的一步,因为它能消除不同特征之间的量纲影响,加速模型收敛,并提升依赖距离计算算法的性能。1. 标准化可防止数值范围大的特征(如收入)在模型训练中占据主导地位,使模型更公平地对待所有特征;2. 对基于梯度下降的模型(如线性回归、神经网络),标准化使损失函数等高线更圆润,加…

    2025年12月14日 好文分享
    000
  • 如何用Python进行数据预测—ARIMA时间序列建模

    arima模型适用于时间序列预测,需遵循平稳性检验、参数选择、建模与预测、评估优化四个步骤。1. 数据需平稳,可通过差分和adf检验处理;2. 通过acf/pacf图或网格搜索确定p,d,q参数;3. 使用statsmodels库训练模型并预测未来值;4. 用mae、rmse等指标评估,优化参数或引…

    2025年12月14日 好文分享
    000
  • 如何用Python处理JSON嵌套结构—json_normalize平铺技巧

    json_normalize 是 pandas 用于处理嵌套 json 数据的工具。1. 理解嵌套 json 结构,如包含字典和列表的多层结构;2. 使用 json_normalize 可将嵌套数据拍平成表格形式,地址字段通过点号路径展开;3. 利用 explode 展开列表字段,每个元素单独一行,…

    2025年12月14日 好文分享
    000
  • Python中如何使用多进程?multiprocessing优化技巧

    在python中处理计算密集型任务时,多进程优于多线程。1. 使用process或pool创建进程,前者适合少量独立进程,后者适合批量任务;2. 多进程默认不共享内存,可用queue、pipe或共享变量通信;3. 控制并发数量以优化性能,建议设为cpu核心数,i/o任务可适当增加;4. 子进程应处理…

    2025年12月14日 好文分享
    000
  • 怎样用Python开发Web应用?Django快速入门指南

    django适合python web开发因为它功能强大且结构清晰,安装使用虚拟环境并执行pip install django,创建项目用django-admin startproject,运行服务器用python manage.py runserver,创建应用用python manage.py s…

    2025年12月14日 好文分享
    000
  • Python中如何分析文本情绪—NLP情感分析实战

    1.情感分析可用库:textblob适合英文简单分析;vader针对社交媒体;transformers精度高;snownlp支持中文。2.用textblob时通过polarity判断情绪。3.中文可用snownlp、分词加词典或huggingface模型。4.注意上下文、反语识别、多语言混杂及数据质…

    2025年12月14日 好文分享
    000
  • Python中如何处理缺失值?pandas数据清洗技巧

    处理缺失值的方法包括检查、删除、填充和标记。1. 使用isna()或isnull()检查缺失值,通过sum()统计每列缺失数量,或用any().any()判断整体是否存在缺失;2. 采用dropna()删除缺失比例高的行或列,subset参数指定检查范围,inplace=true直接修改原数据;3.…

    2025年12月14日 好文分享
    000
  • Python如何实现图像分割?UNet模型应用

    unet模型在python中实现图像分割的关键在于其编码器-解码器结构与跳跃连接。1)数据准备至关重要,需像素级标注、数据增强和预处理以提升泛化能力;2)训练挑战包括类别不平衡(可用dice loss/focal loss解决)、过拟合(用dropout/正则化/学习率调度缓解)及资源限制(可减小批…

    2025年12月14日 好文分享
    000
  • 如何用Python操作Redis数据库?redis-py连接方法

    python操作redis常见方式包括1.安装redis-py库;2.直接连接本地redis服务,默认使用localhost:6379和数据库0;3.通过指定host、port、password、db等参数连接远程实例;4.使用connectionpool创建连接池提升高并发场景下的性能;5.通过s…

    2025年12月14日 好文分享
    000

发表回复

登录后才能评论
关注微信