如何理解Python中的并发与并行?

并发指一段时间内处理多个任务,并行指同一时刻执行多个任务。Python因GIL限制,多线程无法实现真正并行,但可通过多进程、异步IO等方式实现并发与并行。GIL导致多线程在CPU密集型任务中性能受限,但在IO密集型任务中仍有效。多线程适用于IO密集型场景,多进程可绕过GIL实现CPU密集型任务的并行,异步IO适合高并发网络应用,concurrent.futures提供线程池和进程池的高层接口。选择并发模型应根据任务类型:IO密集型用多线程或asyncio,CPU密集型用多进程。并发编程需注意资源竞争、死锁、饥饿等问题,可通过锁、信号量等同步机制解决。例如,使用threading.Lock保护共享变量可避免数据竞争。

如何理解python中的并发与并行?

并发和并行,简单来说,并发是指在一段时间内处理多个任务,而并行是指在同一时刻处理多个任务。Python由于GIL(全局解释器锁)的存在,在多线程环境下并不能真正实现并行,但仍然可以通过多进程等方式实现。理解它们的区别对于编写高性能的Python程序至关重要。

并发与并行的关键区别在于是否“同时”执行。

解决方案:

Python中实现并发主要有以下几种方式:

立即学习“Python免费学习笔记(深入)”;

多线程(threading): 由于GIL的存在,Python的多线程并不能真正利用多核CPU的优势,但仍然适用于IO密集型任务,例如网络请求、文件读写等。因为线程在等待IO时会释放GIL,允许其他线程执行。

import threadingimport timedef task(name):    print(f"Task {name} started")    time.sleep(2)  # 模拟IO操作    print(f"Task {name} finished")threads = []for i in range(3):    t = threading.Thread(target=task, args=(i,))    threads.append(t)    t.start()for t in threads:    t.join()print("All tasks finished")

这段代码创建了3个线程,每个线程执行一个模拟IO操作的任务。尽管它们看起来像是同时运行,但实际上由于GIL的存在,它们仍然是交替执行的。

多进程(multiprocessing): 多进程可以绕过GIL的限制,真正利用多核CPU的优势。适用于CPU密集型任务,例如计算密集型算法、数据处理等。每个进程都有自己独立的内存空间,因此可以避免线程间的资源竞争问题。

import multiprocessingimport timedef task(name):    print(f"Task {name} started")    time.sleep(2)  # 模拟CPU密集型操作    print(f"Task {name} finished")processes = []for i in range(3):    p = multiprocessing.Process(target=task, args=(i,))    processes.append(p)    p.start()for p in processes:    p.join()print("All tasks finished")

这段代码创建了3个进程,每个进程执行一个模拟CPU密集型操作的任务。由于每个进程都有独立的Python解释器,因此可以真正实现并行执行。

异步IO(asyncio): asyncio是Python 3.4引入的异步IO库,可以实现单线程并发。通过事件循环机制,可以在单个线程中高效地处理多个IO操作。适用于高并发的网络应用,例如Web服务器、聊天服务器等。

import asyncioimport timeasync def task(name):    print(f"Task {name} started")    await asyncio.sleep(2)  # 模拟IO操作    print(f"Task {name} finished")async def main():    tasks = [task(i) for i in range(3)]    await asyncio.gather(*tasks)if __name__ == "__main__":    asyncio.run(main())

这段代码使用asyncio创建了3个异步任务,每个任务执行一个模拟IO操作。通过

asyncio.gather

函数,可以并发地执行这些任务。

concurrent.futures:

concurrent.futures

模块提供了一个高层接口,用于异步执行可调用对象。它可以使用线程池或进程池来执行任务,隐藏了底层的线程或进程管理细节。

import concurrent.futuresimport timedef task(name):    print(f"Task {name} started")    time.sleep(2)  # 模拟IO操作    print(f"Task {name} finished")with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:    futures = [executor.submit(task, i) for i in range(3)]    concurrent.futures.wait(futures)print("All tasks finished")

这段代码使用线程池来执行3个任务,

executor.submit

函数将任务提交给线程池,

concurrent.futures.wait

函数等待所有任务完成。

GIL如何影响多线程的性能?

GIL(Global Interpreter Lock)是CPython解释器中的一个全局锁,它确保在任何时刻只有一个线程可以执行Python字节码。这意味着即使在多核CPU上,Python的多线程程序也无法真正实现并行执行,因为所有线程都需要竞争GIL才能执行。

GIL的存在简化了CPython解释器的实现,避免了复杂的线程同步问题。但也限制了Python在CPU密集型任务上的性能。对于IO密集型任务,由于线程在等待IO时会释放GIL,因此多线程仍然可以提高程序的并发性能。

如何选择合适的并发模型?

选择合适的并发模型取决于具体的应用场景和任务类型。

IO密集型任务: 适合使用多线程或异步IO。多线程简单易用,但受GIL限制。异步IO可以实现更高的并发性能,但编程模型相对复杂。CPU密集型任务: 适合使用多进程。多进程可以绕过GIL的限制,真正利用多核CPU的优势。但进程间的通信开销较大。

例如,一个Web服务器需要处理大量的并发请求,可以选择使用异步IO来实现高并发。而一个图像处理程序需要进行大量的计算,可以选择使用多进程来加速处理。

如何避免并发中的常见问题?

并发编程中常见的几个问题包括:

资源竞争: 多个线程或进程同时访问共享资源,可能导致数据不一致或程序崩溃。可以使用锁、信号量等同步机制来保护共享资源。死锁: 多个线程或进程互相等待对方释放资源,导致程序无法继续执行。可以通过避免循环依赖、设置超时时间等方式来预防死锁。饥饿: 某个线程或进程长时间无法获得所需的资源,导致无法执行。可以使用公平锁等机制来避免饥饿。

例如,在多线程环境下,如果多个线程需要同时修改一个全局变量,可以使用锁来保护该变量:

import threadinglock = threading.Lock()counter = 0def increment():    global counter    with lock:        counter += 1threads = []for i in range(10):    t = threading.Thread(target=increment)    threads.append(t)    t.start()for t in threads:    t.join()print(f"Counter: {counter}")

这段代码使用

threading.Lock

创建了一个锁,

with lock:

语句可以自动获取和释放锁,确保在任何时刻只有一个线程可以修改

counter

变量。

除了锁之外,还可以使用其他同步机制,例如信号量、条件变量、事件等,来解决不同的并发问题。选择合适的同步机制取决于具体的应用场景和需求。

以上就是如何理解Python中的并发与并行?的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1370116.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 10:15:26
下一篇 2025年12月14日 10:15:42

相关推荐

  • 如何理解Python的鸭子类型?

    鸭子类型的核心是“行为决定类型”,Python中只要对象具备所需方法即可被调用,无需继承特定类。例如take_flight(entity)函数只关心entity.fly()是否存在,Bird、Airplane等只要有fly方法就能正常运行,提升了代码灵活性与可扩展性。它减少继承依赖,促进松耦合设计,…

    2025年12月14日
    000
  • 如何用Python实现常见的排序算法(快排、归并)?

    快速排序的pivot选择策略包括随机选择和三数取中法,可提升算法效率;归并排序空间复杂度较高,可通过迭代实现或链表结构优化;算法选择需根据数据规模、特点、空间限制和稳定性要求综合考虑,实际中Python内置排序采用Timsort算法。 Python实现排序算法,核心在于理解算法逻辑并巧妙运用Pyth…

    2025年12月14日
    000
  • Windows下安装字体的正确方法:使用AddFontResource API

    本文旨在帮助开发者解决在Windows系统中安装字体时遇到的权限问题。传统的复制字体文件到C:WindowsFonts目录的方法并不适用,因为该目录并非真实的物理目录。本文将介绍使用AddFontResource API来实现字体的安装,并提供代码示例和注意事项,确保字体能够正确安装并被应用程序使用…

    2025年12月14日
    000
  • 如何用Python实现一个命令行工具?

    使用Python的argparse模块可高效构建命令行工具,如实现文件复制与行数统计功能,通过子命令和参数解析提升用户体验;结合Click、Typer等第三方库可进一步简化开发,增强功能与可读性。 Python在构建命令行工具方面有着得天独厚的优势,无论是内置的 argparse 模块,还是像 Cl…

    2025年12月14日
    000
  • 高效 Pandas 数据聚合:计算分组百分比利用率

    本文旨在介绍如何使用 Pandas 库高效地对 DataFrame 进行分组聚合,并计算特定指标的百分比利用率。通过 groupby() 和 transform() 方法,避免使用低效的 apply() 函数,实现更快速、简洁的数据处理。我们将以计算设备带宽利用率为例,演示具体操作步骤和代码示例。 …

    2025年12月14日
    000
  • Pandas DataFrame 数据聚合:高效计算分组百分比

    本文旨在介绍如何使用 Pandas DataFrame 对数据进行分组聚合,并计算特定列的百分比。我们将通过一个实际案例,演示如何按设备 (Device) 对带宽使用情况 (Bw_in, Bw_out) 进行汇总,并计算其占总流量 (In, Out) 的百分比,从而高效地实现数据分析目标。 使用 g…

    2025年12月14日
    000
  • functools 模块中的 lru_cache 和 wraps

    lru_cache通过缓存函数结果提升性能,wraps保留被装饰函数的元信息以确保代码可维护性。两者在优化与调试中互补使用,适用于递归、I/O操作等重复计算场景,且需合理配置maxsize和typed参数以平衡性能与内存开销。 functools 模块中的 lru_cache 和 wraps 是Py…

    2025年12月14日
    000
  • 什么是Python的GIL(全局解释器锁)?它对多线程有何影响?

    GIL是CPython解释器的全局锁,确保同一时间仅一个线程执行字节码,源于引用计数内存管理需线程安全。它使CPU密集型多线程性能受限,因多核无法并行执行;但I/O密集型任务可在等待时释放GIL,实现并发。绕过GIL的方法包括:使用multiprocessing实现多进程并行,采用asyncio处理…

    2025年12月14日
    000
  • 如何使用虚拟环境(Virtualenv)?

    虚拟环境能解决依赖冲突,通过为每个Python项目创建独立环境,实现库和解释器的隔离,避免版本冲突,确保项目间互不干扰。 虚拟环境(Virtualenv)是Python开发中一个非常基础但极其重要的工具,它允许你为每个项目创建独立的Python运行环境,从而有效地隔离不同项目所需的库和依赖,彻底解决…

    2025年12月14日
    000
  • 使用 FastAPI 上传图片并传递给 YOLOv8 模型

    本文档旨在指导开发者如何使用 FastAPI 框架构建一个 REST API 接口,该接口能够接收图片上传,并将图片数据传递给 YOLOv8 模型进行处理。我们将重点介绍如何处理上传的图片文件,并将其转换为 YOLOv8 模型能够接受的格式,解决直接传递字节数据导致的 “Unsuppor…

    2025年12月14日
    000
  • 将十六进制文本转换为指定 JSON 格式的教程

    本文档旨在指导开发者如何使用 Python 将包含十六进制数据的文本文件转换为特定格式的 JSON 文件。该过程涉及读取文本文件,解析十六进制数据,将其转换为十进制,并最终以指定的 JSON 结构输出。通过本文,你将学习如何使用正则表达式提取数据,以及如何构建符合要求的 JSON 结构。 1. 理解…

    2025年12月14日
    000
  • 如何处理Python中的异常?常用的异常类有哪些?

    Python异常处理通过try…except…else…finally结构捕获和处理错误,保证程序健壮性;可自定义异常类继承Exception,并在抛出时提供详细信息;应优先使用内置异常类型如ValueError、TypeError等,避免宽泛捕获,区分业务与技术…

    2025年12月14日
    000
  • 如何使用itertools模块进行高效的循环迭代?

    itertools模块通过惰性求值和C级优化提供高效迭代,其核心函数如count、cycle、chain、groupby、product等,可实现内存友好且高性能的循环操作,适用于处理大数据、组合排列及序列连接等场景。 说起Python里高效的循环迭代, itertools 模块绝对是绕不开的话题。…

    2025年12月14日
    000
  • 如何使用collections模块中的常用数据结构(defaultdict, Counter, deque)?

    defaultdict、Counter和deque是Python collections模块中高效处理数据分组、计数和双端操作的工具。defaultdict通过自动初始化缺失键提升代码简洁性与效率;Counter专用于可哈希对象的频率统计,提供most_common等便捷方法,适合大数据计数但需注意…

    2025年12月14日
    000
  • 什么是虚拟环境?为何要用 virtualenv 或 venv?

    虚拟环境通过为每个Python项目创建独立的依赖空间,解决了不同项目间库版本冲突的问题。它隔离了Python解释器和第三方库,确保项目依赖互不干扰,避免全局环境被“污染”。使用venv(Python 3.3+内置)或virtualenv可创建虚拟环境,激活后所有包安装仅限该环境。常见实践包括:将虚拟…

    2025年12月14日
    000
  • Windows下安装字体:正确方法与权限处理

    在Windows系统中,安装字体并非简单地将字体文件复制到C:WindowsFonts目录。该目录实际上是一个虚拟目录,它通过注册表枚举已安装的字体。直接复制文件到此目录并不能保证字体被系统正确识别和使用。正确的做法是使用Windows API函数AddFontResource来安装字体。 理解C:…

    2025年12月14日
    000
  • 正确安装字体到Windows系统:避免直接复制到Fonts文件夹

    本文旨在指导开发者如何在Windows系统中正确安装字体,避免直接复制字体文件到C:WindowsFonts文件夹,并解释了为什么这种方法不可行。我们将介绍使用AddFontResource API的正确方法,并提供示例代码,帮助开发者在程序中实现字体的安装功能。 直接将字体文件复制到C:Windo…

    2025年12月14日
    000
  • Django 中的中间件(Middleware)及其作用

    Django中间件在请求-响应周期中扮演关键角色,它在请求到达视图前和响应返回客户端前进行全局处理,支持认证、安全、日志等跨领域功能。通过自定义中间件类并注册到MIDDLEWARE列表,开发者可灵活插入逻辑,实现如IP限制、性能监控等功能。其执行顺序遵循配置列表,请求正序、响应倒序,且可通过返回Ht…

    2025年12月14日
    000
  • 将十六进制文本转换为特定JSON格式的Python教程

    本文将介绍如何使用Python将包含十六进制数据的文本文件转换为特定格式的JSON文件。我们将首先解析文本文件,提取相关信息,然后将十六进制数据转换为十进制,最后按照预定的JSON结构进行组织和输出。 准备工作 在开始之前,请确保你已经安装了Python环境。本教程使用Python 3.x版本。你还…

    2025年12月14日
    000
  • 将十六进制数据转换为特定JSON格式的教程

    本文档旨在指导读者如何使用Python将包含十六进制数据的文本文件转换为特定格式的JSON文件。我们将使用正则表达式解析文本,并将十六进制值转换为十进制,最终生成符合要求的JSON结构。本教程提供详细的代码示例和解释,帮助读者理解转换过程并应用于实际场景。 1. 理解数据格式 首先,我们需要理解输入…

    2025年12月14日
    000

发表回复

登录后才能评论
关注微信