列举Python中常见的数据结构及其特点。

Python中最常见的数据结构包括列表、元组、字典和集合。列表是可变的有序序列,适合频繁修改的场景;元组是不可变的有序序列,用于固定数据;字典是键值对的无序集合,基于哈希表实现,查找效率高;集合是无序且不重复的元素集合,常用于去重和集合运算。此外,collections模块提供了deque、Counter、namedtuple等高效工具,适用于特定场景,如双端操作、计数统计和轻量级结构化数据处理。这些数据结构构成了Python程序设计的基础,合理选择能显著提升代码性能与可读性。

列举python中常见的数据结构及其特点。

Python中最常见的数据结构包括列表(List)、元组(Tuple)、字典(Dictionary)和集合(Set)。它们各自拥有独特的特性,比如列表是可变的有序序列,元组是不可变的有序序列,字典是键值对的无序集合,而集合则是无序且不重复元素的集合。理解这些基本结构是高效编写Python代码的基础,它们在处理不同类型的数据和应用场景时各有侧重。

Python中的数据结构是构建复杂程序的基础砖瓦,它们决定了我们如何组织、存储和访问数据。在我看来,Python之所以如此受欢迎,很大程度上得益于其内置数据结构的设计哲学——既强大又易用。

列表(List)列表大概是我在日常开发中最常用到的数据结构了。它是一个有序的、可变的项目集合,意味着你可以随时添加、删除或修改列表中的元素。对我来说,列表就像一个灵活的购物清单,你可以随时增减商品,或者改变商品的数量。

my_list = [1, 'hello', 3.14, True]my_list.append(5) # 添加元素my_list[1] = 'world' # 修改元素print(my_list) # 输出: [1, 'world', 3.14, True, 5]

它的优点在于灵活性和便捷性,非常适合需要频繁变动元素内容的场景。但同时,由于其可变性,在多线程环境下处理不当可能会引发一些意想不到的问题,需要特别注意同步。

元组(Tuple)元组和列表有点像一对孪生兄弟,但元组是“固定不变”的。它也是一个有序序列,但一旦创建,就不能修改其内容。我通常会用元组来存储一些不应该被程序意外修改的数据,比如坐标点、配置项或者函数返回的多个值。

my_tuple = (1, 'hello', 3.14)# my_tuple[1] = 'world' # 这会报错!元组不支持修改print(my_tuple[0]) # 输出: 1

元组的不可变性让它在某些场景下比列表更安全,尤其是在作为字典的键或者集合的元素时(因为它们需要元素是可哈希的)。而且,通常认为元组的创建和访问速度会比列表稍快一些,尽管在大多数应用中这种性能差异并不明显。

立即学习“Python免费学习笔记(深入)”;

字典(Dictionary)字典,在我看来,是Python数据结构中的“瑞士军刀”。它存储的是键值对(key-value pairs),每个键都必须是唯一的,而且是不可变的(可哈希的)。字典是无序的,尽管从Python 3.7开始,字典会保持插入顺序,但这更多是一种实现细节,我们不应该依赖这种顺序进行逻辑处理。它就像一本电话簿,通过名字(键)快速找到电话号码(值)。

my_dict = {'name': 'Alice', 'age': 30, 'city': 'New York'}print(my_dict['name']) # 输出: Alicemy_dict['age'] = 31 # 修改值my_dict['occupation'] = 'Engineer' # 添加新的键值对print(my_dict) # 输出: {'name': 'Alice', 'age': 31, 'city': 'New York', 'occupation': 'Engineer'}

字典在需要通过特定标识符快速查找数据时表现出色,其平均时间复杂度为O(1)。这是因为字典内部使用了哈希表实现。

集合(Set)集合是另一个非常有用的数据结构,它是一个无序的、不重复元素的集合。如果你的需求是存储一组独一无二的元素,并且不关心它们的顺序,那么集合就是最佳选择。我经常用它来去重,或者进行集合运算(交集、并集、差集)。

my_set = {1, 2, 3, 2, 4}print(my_set) # 输出: {1, 2, 3, 4} (顺序可能不同)another_set = {3, 4, 5, 6}print(my_set.union(another_set)) # 并集: {1, 2, 3, 4, 5, 6}print(my_set.intersection(another_set)) # 交集: {3, 4}

集合的元素必须是可哈希的,所以列表和字典不能直接作为集合的元素。它的查找、添加、删除操作平均时间复杂度也是O(1)。

Python列表与元组:何时选择可变,何时选择不可变?

在Python编程中,列表(List)和元组(Tuple)常常让初学者感到困惑,它们看起来很相似,都是有序序列,但核心区别在于可变性。什么时候该用列表,什么时候又该用元组呢?这不仅仅是个人偏好的问题,更是关乎代码的健壮性、性能和意图表达。

从我个人的经验来看,选择列表通常是因为我需要一个动态的、可以随时调整的数据集合。比如,我正在收集用户输入的数据,或者处理一个需要不断添加、删除元素的队列或栈。列表的可变性赋予了它极大的灵活性,我可以轻松地使用

append()

extend()

remove()

pop()

等方法来修改其内容。这种灵活性在数据处理流程中是不可或缺的。

然而,元组则代表了一种“不变性”的承诺。当我知道一组数据一旦创建就不应该被改变时,我就会选择元组。例如,一个点的坐标

(x, y)

,一个RGB颜色值

(r, g, b)

,或者一个数据库查询结果的行数据。使用元组的好处在于,它能清晰地向其他开发者(包括未来的自己)表明,这部分数据是固定的,不应该被修改。这有助于防止意外的数据篡改,尤其是在将数据作为函数参数传递时,可以确保原始数据不被函数内部逻辑影响。

更深层次地看,元组的不可变性也带来了一些技术上的优势。首先,元组可以作为字典的键(因为字典的键必须是可哈希的,而可变对象通常不可哈希),也可以作为集合的元素。列表则不能。其次,虽然在小规模数据上性能差异不明显,但在某些场景下,元组的创建和迭代速度可能会略快于列表,因为它不需要考虑内部结构变化的开销。此外,Python的解释器在某些情况下可以对元组进行更多的优化。

所以,我的选择标准很简单:如果数据需要频繁变动,或者我需要对序列进行排序、插入、删除等操作,那肯定是列表。如果数据是固定不变的,代表一个逻辑上的“整体”,并且我希望代码能明确表达这种不变性,那么元组就是更好的选择。这不仅仅是语法上的差异,更是编程思想上的体现。

Python字典的哈希机制如何提升查找效率?

Python字典之所以能实现极高的查找效率,其核心秘密在于它底层采用了哈希表(hash table)的实现机制。理解这一点,对于我们优化代码、避免潜在性能瓶颈至关重要。

简单来说,当我们往字典中插入一个键值对时,Python会首先计算键的哈希值(hash value)。这个哈希值是一个整数,它通过一个哈希函数从键中派生出来。理想情况下,不同的键会得到不同的哈希值。然后,字典会根据这个哈希值将键值对存储在哈希表中的特定“桶”(bucket)里。

当我们需要查找一个键对应的值时,Python会再次计算这个键的哈希值,并直接根据哈希值定位到对应的桶。如果桶中只有一个元素,那么查找过程几乎是瞬间完成的,这就是所谓的O(1)平均时间复杂度。这就像你有一本字典,每个单词(键)都有一个页码(哈希值),你可以直接翻到那一页找到解释(值),而不需要从头到尾逐页查找。

然而,哈希机制并非完美无缺。一个常见的问题是“哈希冲突”(hash collision),即两个不同的键计算出了相同的哈希值。Python的字典实现会通过一些策略来解决冲突,比如开放寻址法(open addressing)或链表法(separate chaining)。当发生冲突时,查找效率会略微下降,因为Python可能需要在同一个桶中遍历多个元素才能找到正确的键。这就是为什么字典的查找是“平均O(1)”而不是“最坏O(1)”的原因。如果哈希函数设计不佳,或者键的分布极端不均匀,导致大量冲突,字典的性能可能会退化到O(N)(N为字典中元素的数量),但这在实际应用中是比较罕见的。

因此,为了保证字典的高效性,作为键的对象必须是“可哈希的”(hashable)。这意味着对象在其生命周期内哈希值必须保持不变,并且可以与其它对象进行相等性比较。不可变类型如整数、浮点数、字符串、元组等都是可哈希的。而可变类型如列表、字典、集合则不可哈希,因此不能直接作为字典的键。理解这一机制,能帮助我们更好地设计数据结构,避免将不可哈希对象作为键引发的

TypeError

,并充分利用字典的高效查找能力。

除了基础结构,Python还有哪些高效的数据结构应用场景?

当我们谈论Python的数据结构时,列表、元组、字典和集合无疑是基石。但Python的标准库,尤其是

collections

模块,还提供了许多专门优化过的数据结构,它们在特定场景下能显著提升代码的效率和可读性。对我来说,这些“进阶”的数据结构就像是工具箱里的专用工具,虽然不常用,但一旦用上,就能事半功倍。

一个我经常用到的例子是

collections.deque

(双端队列)。它是一个支持从两端快速添加和删除元素的列表状容器。想象一下你需要处理一个日志流,或者实现一个最近访问记录的缓存,

deque

就非常适合。普通列表在头部插入或删除元素时效率较低(因为需要移动所有后续元素),而

deque

则能保持O(1)的复杂度。

from collections import dequehistory = deque(maxlen=5) # 限制最大长度为5history.append('page1')history.append('page2')history.append('page3')history.append('page4')history.append('page5')print(history) # deque(['page1', 'page2', 'page3', 'page4', 'page5'], maxlen=5)history.append('page6') # page1会被自动移除print(history) # deque(['page2', 'page3', 'page4', 'page5', 'page6'], maxlen=5)print(history.popleft()) # 从左侧移除并返回 'page2'

另一个非常实用的工具是

collections.Counter

。如果你需要统计一个序列中元素的出现次数,

Counter

简直是为这个任务量身定制的。它是一个字典的子类,键是元素,值是它们的计数。这比手动创建一个字典然后循环计数要简洁和高效得多。

from collections import Counterwords = ['apple', 'banana', 'apple', 'orange', 'banana', 'apple']word_counts = Counter(words)print(word_counts) # Counter({'apple': 3, 'banana': 2, 'orange': 1})print(word_counts.most_common(1)) # [('apple', 3)]

此外,

collections.namedtuple

也值得一提。它允许你创建带有命名字段的元组子类。这在处理一些结构化但又不想定义完整类的轻量级数据时非常有用,它兼顾了元组的不可变性和类属性访问的便利性,让代码更具可读性。

from collections import namedtuplePoint = namedtuple('Point', ['x', 'y'])p = Point(10, 20)print(p.x, p.y) # 10 20

还有像

heapq

模块提供了堆队列(优先队列)的实现,对于需要快速找到最小或最大元素的场景非常有效;

array

模块则提供了一个类似列表但只存储同类型数据的数组,在处理大量数值数据时能节省内存并提高性能。这些专用数据结构都建立在Python基础数据类型之上,通过针对特定操作进行优化,极大地扩展了Python在数据处理方面的能力。了解并灵活运用它们,是成为一名更高效Python开发者的必经之路。

以上就是列举Python中常见的数据结构及其特点。的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1370136.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 10:16:40
下一篇 2025年12月14日 10:16:52

相关推荐

  • CSS mask属性无法获取图片:为什么我的图片不见了?

    CSS mask属性无法获取图片 在使用CSS mask属性时,可能会遇到无法获取指定照片的情况。这个问题通常表现为: 网络面板中没有请求图片:尽管CSS代码中指定了图片地址,但网络面板中却找不到图片的请求记录。 问题原因: 此问题的可能原因是浏览器的兼容性问题。某些较旧版本的浏览器可能不支持CSS…

    2025年12月24日
    900
  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 为什么设置 `overflow: hidden` 会导致 `inline-block` 元素错位?

    overflow 导致 inline-block 元素错位解析 当多个 inline-block 元素并列排列时,可能会出现错位显示的问题。这通常是由于其中一个元素设置了 overflow 属性引起的。 问题现象 在不设置 overflow 属性时,元素按预期显示在同一水平线上: 不设置 overf…

    2025年12月24日 好文分享
    400
  • 网页使用本地字体:为什么 CSS 代码中明明指定了“荆南麦圆体”,页面却仍然显示“微软雅黑”?

    网页中使用本地字体 本文将解答如何将本地安装字体应用到网页中,避免使用 src 属性直接引入字体文件。 问题: 想要在网页上使用已安装的“荆南麦圆体”字体,但 css 代码中将其置于第一位的“font-family”属性,页面仍显示“微软雅黑”字体。 立即学习“前端免费学习笔记(深入)”; 答案: …

    2025年12月24日
    000
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么我的特定 DIV 在 Edge 浏览器中无法显示?

    特定 DIV 无法显示:用户代理样式表的困扰 当你在 Edge 浏览器中打开项目中的某个 div 时,却发现它无法正常显示,仔细检查样式后,发现是由用户代理样式表中的 display none 引起的。但你疑问的是,为什么会出现这样的样式表,而且只针对特定的 div? 背后的原因 用户代理样式表是由…

    2025年12月24日
    200
  • inline-block元素错位了,是为什么?

    inline-block元素错位背后的原因 inline-block元素是一种特殊类型的块级元素,它可以与其他元素行内排列。但是,在某些情况下,inline-block元素可能会出现错位显示的问题。 错位的原因 当inline-block元素设置了overflow:hidden属性时,它会影响元素的…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 为什么使用 inline-block 元素时会错位?

    inline-block 元素错位成因剖析 在使用 inline-block 元素时,可能会遇到它们错位显示的问题。如代码 demo 所示,当设置了 overflow 属性时,a 标签就会错位下沉,而未设置时却不会。 问题根源: overflow:hidden 属性影响了 inline-block …

    2025年12月24日
    000
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 为什么我的 CSS 元素放大效果无法正常生效?

    css 设置元素放大效果的疑问解答 原提问者在尝试给元素添加 10em 字体大小和过渡效果后,未能在进入页面时看到放大效果。探究发现,原提问者将 CSS 代码直接写在页面中,导致放大效果无法触发。 解决办法如下: 将 CSS 样式写在一个单独的文件中,并使用 标签引入该样式文件。这个操作与原提问者观…

    2025年12月24日
    000
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 em 和 transition 设置后元素没有放大?

    元素设置 em 和 transition 后不放大 一个 youtube 视频中展示了设置 em 和 transition 的元素在页面加载后会放大,但同样的代码在提问者电脑上没有达到预期效果。 可能原因: 问题在于 css 代码的位置。在视频中,css 被放置在单独的文件中并通过 link 标签引…

    2025年12月24日
    100

发表回复

登录后才能评论
关注微信