Python中批量执行配对统计比较的循环方法

Python中批量执行配对统计比较的循环方法

本教程探讨如何在Python中高效地对多组配对数值向量执行统计比较,特别是使用Wilcoxon符号秩检验。通过将数据结构化为列表或字典,并结合循环迭代,可以自动化重复的统计分析过程,显著提高代码的可维护性和扩展性,避免手动重复代码。

引言:自动化统计比较的需求

在数据分析和科学研究中,我们经常需要对多组配对数据进行统计比较,以评估它们之间是否存在显著差异。例如,在医学影像分析中,可能需要比较不同脑区(如mcp、pct、gcc等)在两种不同处理(如hc和tw)下的测量值。当需要进行比较的配对数量庞大时(如本例中提及的48个区域,共144个向量),手动为每一对编写统计检验代码不仅效率低下,而且极易出错,难以维护。

以Wilcoxon符号秩检验为例,这是一种非参数检验,用于比较两个相关样本(即配对样本)的总体中位数是否存在差异。其基本用法是scipy.stats.wilcoxon(x, y),其中x和y是配对的数值向量。为了解决重复性操作的问题,核心在于如何有效地组织数据,并利用Python的循环结构来自动化这一过程。

数据组织与准备

实现统计比较自动化的第一步是合理地组织原始数据。原始数据通常以独立的变量形式存在,例如:

hc_mcp = [0.45, 0.43, 0.46, 0.46, 0.45, 0.39, 0.48, 0.47, 0.50, 0.45, 0.47, 0.47, 0.46]hc_pct = [0.44, 0.48, 0.45, 0.46, 0.47, 0.37, 0.56, 0.46, 0.49, 0.53, 0.46, 0.47, 0.48]# ... 其他 hc_xxx 向量tw_mcp = [0.47, 0.46, 0.44, 0.48, 0.45, 0.45, 0.46, 0.44, 0.47, 0.46, 0.50, 0.49, 0.48]tw_pct = [0.46, 0.48, 0.45, 0.48, 0.47, 0.45, 0.46, 0.43, 0.43, 0.49, 0.49, 0.47, 0.44]# ... 其他 tw_xxx 向量

为了在循环中便捷地访问这些配对向量,我们可以采用以下两种常见且高效的数据组织方式:

方式一:使用并行列表

将属于同一组的所有向量分别收集到各自的列表中。关键是确保在这些列表中,对应进行比较的向量(例如hc_mcp和tw_mcp)位于相同的索引位置。

立即学习“Python免费学习笔记(深入)”;

# 示例数据(为简洁起见,只列出部分)hc_mcp = [0.45, 0.43, 0.46, 0.46, 0.45, 0.39, 0.48, 0.47, 0.50, 0.45, 0.47, 0.47, 0.46]hc_pct = [0.44, 0.48, 0.45, 0.46, 0.47, 0.37, 0.56, 0.46, 0.49, 0.53, 0.46, 0.47, 0.48]hc_gcc = [0.51, 0.56, 0.57, 0.54, 0.55, 0.58, 0.51, 0.54, 0.55, 0.54, 0.55, 0.53, 0.54]tw_mcp = [0.47, 0.46, 0.44, 0.48, 0.45, 0.45, 0.46, 0.44, 0.47, 0.46, 0.50, 0.49, 0.48]tw_pct = [0.46, 0.48, 0.45, 0.48, 0.47, 0.45, 0.46, 0.43, 0.43, 0.49, 0.49, 0.47, 0.44]tw_gcc = [0.56, 0.56, 0.55, 0.57, 0.52, 0.56, 0.53, 0.55, 0.55, 0.55, 0.56, 0.55, 0.56]# 将对应的数据向量放入各自的列表中,并确保顺序一致hc_data_list = [hc_mcp, hc_pct, hc_gcc]tw_data_list = [tw_mcp, tw_pct, tw_gcc]

方式二:使用字典

当数据对具有明确的标识符(如’mcp’, ‘pct’)时,使用字典来组织数据可以提供更强的可读性和灵活性。每个字典的键对应于一个标识符,值则为该标识符下的数据向量。

# 示例数据(为简洁起见,只列出部分)hc_data_dict = {    'mcp': [0.45, 0.43, 0.46, 0.46, 0.45, 0.39, 0.48, 0.47, 0.50, 0.45, 0.47, 0.47, 0.46],    'pct': [0.44, 0.48, 0.45, 0.46, 0.47, 0.37, 0.56, 0.46, 0.49, 0.53, 0.46, 0.47, 0.48],    'gcc': [0.51, 0.56, 0.57, 0.54, 0.55, 0.58, 0.51, 0.54, 0.55, 0.54, 0.55, 0.53, 0.54]}tw_data_dict = {    'mcp': [0.47, 0.46, 0.44, 0.48, 0.45, 0.45, 0.46, 0.44, 0.47, 0.46, 0.50, 0.49, 0.48],    'pct': [0.46, 0.48, 0.45, 0.48, 0.47, 0.45, 0.46, 0.43, 0.43, 0.49, 0.49, 0.47, 0.44],    'gcc': [0.56, 0.56, 0.55, 0.57, 0.52, 0.56, 0.53, 0.55, 0.55, 0.55, 0.56, 0.55, 0.56]}

使用循环执行统计检验

数据组织完成后,就可以利用Python的for循环和zip函数(或字典的keys()/items()方法)来自动化统计检验。

导入必要的库

首先,需要从scipy.stats模块导入wilcoxon函数。

from scipy.stats import wilcoxon

基于并行列表的循环

这是最直接的实现方式,利用zip函数同时迭代两个列表,每次取出对应的一对向量进行检验。

ri_hc_pvals = [] # 用于存储所有p值的列表for hc_vec, tw_vec in zip(hc_data_list, tw_data_list):    # 执行Wilcoxon符号秩检验    # `zero_method='wilcox'` 是默认值,处理零差值的方式    # `correction=False` 通常用于小样本,此处为默认    stat, p_value = wilcoxon(hc_vec, tw_vec)    ri_hc_pvals.append(p_value)print("基于并行列表的P值结果:", ri_hc_pvals)

基于字典的循环

如果使用字典组织数据,可以通过遍历一个字典的键,然后用这些键从两个字典中取出对应的向量。

ri_hc_pvals_dict = {} # 用于存储结果的字典,键为区域名,值为p值# 假设两个字典的键集合是相同的for roi_name in hc_data_dict.keys():    hc_vec = hc_data_dict[roi_name]    tw_vec = tw_data_dict[roi_name]    stat, p_value = wilcoxon(hc_vec, tw_vec)    ri_hc_pvals_dict[roi_name] = p_valueprint("基于字典的P值结果:", ri_hc_pvals_dict)

完整示例代码

下面是一个包含数据定义、组织、统计检验和结果存储的完整示例:

from scipy.stats import wilcoxon# 原始数据定义hc_mcp = [0.45, 0.43, 0.46, 0.46, 0.45, 0.39, 0.48, 0.47, 0.50, 0.45, 0.47, 0.47, 0.46]hc_pct = [0.44, 0.48, 0.45, 0.46, 0.47, 0.37, 0.56, 0.46, 0.49, 0.53, 0.46, 0.47, 0.48]hc_gcc = [0.51, 0.56, 0.57, 0.54, 0.55, 0.58, 0.51, 0.54, 0.55, 0.54, 0.55, 0.53, 0.54]hc_bcc = [0.56, 0.62, 0.64, 0.63, 0.60, 0.65, 0.60, 0.64, 0.64, 0.61, 0.63, 0.58, 0.63]hc_scc = [0.68, 0.73, 0.74, 0.71, 0.72, 0.73, 0.70, 0.72, 0.72, 0.72, 0.71, 0.67, 0.73]tw_mcp = [0.47, 0.46, 0.44, 0.48, 0.45, 0.45, 0.46, 0.44, 0.47, 0.46, 0.50, 0.49, 0.48]tw_pct = [0.46, 0.48, 0.45, 0.48, 0.47, 0.45, 0.46, 0.43, 0.43, 0.49, 0.49, 0.47, 0.44]tw_gcc = [0.56, 0.56, 0.55, 0.57, 0.52, 0.56, 0.53, 0.55, 0.55, 0.55, 0.56, 0.55, 0.56]tw_bcc = [0.62, 0.63, 0.60, 0.63, 0.61, 0.63, 0.62, 0.63, 0.63, 0.62, 0.63, 0.61, 0.65]tw_scc = [0.71, 0.70, 0.70, 0.71, 0.68, 0.74, 0.72, 0.73, 0.70, 0.68, 0.69, 0.70, 0.71]# 方式一:使用并行列表组织数据hc_data_list = [hc_mcp, hc_pct, hc_gcc, hc_bcc, hc_scc]tw_data_list = [tw_mcp, tw_pct, tw_gcc, tw_bcc, tw_scc]roi_names = ['mcp', 'pct', 'gcc', 'bcc', 'scc'] # 可选:用于结果标识# 存储P值结果p_values_list = []test_stats_list = [] # 也可以存储检验统计量print("--- 基于并行列表的Wilcoxon检验结果 ---")for i, (hc_vec, tw_vec) in enumerate(zip(hc_data_list, tw_data_list)):    stat, p_value = wilcoxon(hc_vec, tw_vec)    p_values_list.append(p_value)    test_stats_list.append(stat)    print(f"区域 {roi_names[i]}: 检验统计量 = {stat:.4f}, P值 = {p_value:.4f}")print("n所有P值 (列表形式):", p_values_list)# 方式二:使用字典组织数据hc_data_dict = {    'mcp': hc_mcp, 'pct': hc_pct, 'gcc': hc_gcc, 'bcc': hc_bcc, 'scc': hc_scc}tw_data_dict = {    'mcp': tw_mcp, 'pct': tw_pct, 'gcc': tw_gcc, 'bcc': tw_bcc, 'scc': tw_scc}p_values_dict = {} # 存储P值结果,键为区域名print("n--- 基于字典的Wilcoxon检验结果 ---")for roi_name in sorted(hc_data_dict.keys()): # 确保按一致顺序遍历    hc_vec = hc_data_dict[roi_name]    tw_vec = tw_data_dict[roi_name]    stat, p_value = wilcoxon(hc_vec, tw_vec)    p_values_dict[roi_name] = p_value    print(f"区域 {roi_name}: 检验统计量 = {stat:.4f}, P值 = {p_value:.4f}")print("n所有P值 (字典形式):", p_values_dict)

注意事项与最佳实践

数据配对的准确性: 这是进行配对检验的基石。无论采用哪种数据组织方式,都必须确保循环中每次迭代取出的两个向量是真正意义上的“配对”数据。使用并行列表时,依赖于索引顺序;使用字典时,依赖于键名匹配。结果存储与管理: 仅仅计算出P值是不够的。通常,还需要记录检验统计量、对应的区域名称,甚至原始数据的描述性统计量。将结果存储在列表、字典或更复杂的结构(如Pandas DataFrame)中,便于后续的分析、报告和可视化。代码可读性与维护: 对于大量的向量,使用有意义的变量名和适当的注释至关重要。将数据组织成列表或字典本身就是提高可读性的有效手段。错误处理:数据长度不匹配: zip函数在处理长度不一的列表时,会以最短的列表为准停止迭代。如果要求所有列表长度必须一致,则应在循环前进行检查。数据类型: 确保输入wilcoxon函数的是数值型列表或NumPy数组。零差值处理: wilcoxon函数有zero_method参数来处理配对差值为零的情况,默认值通常适用于大多数场景。可扩展性: 当需要处理更多组数据或更多类型的统计检验时,这种循环结构能够轻松扩展。只需修改数据组织方式和循环内部的检验函数即可。NumPy数组: 对于大规模数值计算,将Python列表转换为NumPy数组可以显著提高性能,尽管scipy.stats函数通常也能接受列表作为输入。

总结

通过本教程,我们学习了如何在Python中利用循环结构自动化多组配对数据的统计比较。核心在于将原始数据进行结构化(例如,使用并行列表或字典),然后结合scipy.stats库中的统计检验函数(如wilcoxon),在循环中对每对数据执行分析。这种方法不仅极大地提高了代码的效率和可维护性,也为处理大规模数据集的重复性统计任务提供了一个健壮且灵活的解决方案。在实际应用中,根据数据的特点和

以上就是Python中批量执行配对统计比较的循环方法的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1370650.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 10:43:44
下一篇 2025年12月14日 10:43:49

相关推荐

  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200
  • 什么是功能类优先的 CSS 框架?

    理解功能类优先 tailwind css 是一款功能类优先的 css 框架,用户可以通过组合功能类轻松构建设计。为了理解功能类优先,我们首先要区分语义类和功能类这两种 css 类名命名方式。 语义类 以前比较常见的 css 命名方式是根据页面中模块的功能来命名。例如: 立即学习“前端免费学习笔记(深…

    2025年12月24日
    000
  • 正则表达式在文本验证中的常见问题有哪些?

    正则表达式助力文本输入验证 在文本输入框的验证中,经常遇到需要限定输入内容的情况。例如,输入框只能输入整数,第一位可以为负号。对于不会使用正则表达式的人来说,这可能是个难题。下面我们将提供三种正则表达式,分别满足不同的验证要求。 1. 可选负号,任意数量数字 如果输入框中允许第一位为负号,后面可输入…

    2025年12月24日
    000
  • SCSS – 增强您的 CSS 工作流程

    在本文中,我们将探索 scss (sassy css),这是一个 css 预处理器,它通过允许变量、嵌套规则、mixins、函数等来扩展 css 的功能。 scss 使 css 的编写和维护变得更加容易,尤其是对于大型项目。 1.什么是scss? scss 是 sass(syntropically …

    2025年12月24日
    000
  • 为什么多年的经验让我选择全栈而不是平均栈

    在全栈和平均栈开发方面工作了 6 年多,我可以告诉您,虽然这两种方法都是流行且有效的方法,但它们满足不同的需求,并且有自己的优点和缺点。这两个堆栈都可以帮助您创建 Web 应用程序,但它们的实现方式却截然不同。如果您在两者之间难以选择,我希望我在两者之间的经验能给您一些有用的见解。 在这篇文章中,我…

    2025年12月24日
    000
  • 姜戈顺风

    本教程演示如何在新项目中从头开始配置 django 和 tailwindcss。 django 设置 创建一个名为 .venv 的新虚拟环境。 # windows$ python -m venv .venv$ .venvscriptsactivate.ps1(.venv) $# macos/linu…

    2025年12月24日
    000
  • css3选择器优化技巧

    CSS3 选择器优化技巧可提升网页性能:减少选择器层级,提高浏览器解析效率。避免通配符选择器,减少性能损耗。优先使用 ID 选择器,快速定位目标元素。用类选择器代替标签选择器,精确匹配。使用属性选择器,增强匹配精度。巧用伪类和伪元素,提升性能。组合多个选择器,简化代码。利用 CSS 预处理器,增强代…

    2025年12月24日
    300
  • 花 $o 学习这些编程语言或免费

    → Python → JavaScript → Java → C# → 红宝石 → 斯威夫特 → 科特林 → C++ → PHP → 出发 → R → 打字稿 []https://x.com/e_opore/status/1811567830594388315?t=_j4nncuiy2wfbm7ic…

    2025年12月24日
    000
  • css代码规范有哪些

    CSS 代码规范对于保持一致性、可读性和可维护性至关重要,常见的规范包括:命名约定:使用小写字母和短划线,命名特定且描述性。缩进和对齐:按特定规则缩进、对齐选择器、声明和值。属性和值顺序:遵循特定顺序排列属性和值。注释:解释复杂代码,并使用正确的语法。分号:每个声明后添加分号。大括号:左大括号前换行…

    2025年12月24日
    200
  • html5怎么导视频_html5用video标签导出或Canvas转DataURL获视频【导出】

    HTML5无法直接导出video标签内容,需借助Canvas捕获帧并结合MediaRecorder API、FFmpeg.wasm或服务端协同实现。MediaRecorder适用于WebM格式前端录制;FFmpeg.wasm支持MP4等格式及精细编码控制;服务端方案适合高负载场景。 如果您希望在网页…

    2025年12月23日
    300
  • 如何查看编写的html_查看自己编写的HTML文件效果【效果】

    要查看HTML文件的浏览器渲染效果,需确保文件以.html为扩展名保存、用浏览器直接打开、利用开发者工具调试、必要时启用本地HTTP服务器、或使用编辑器实时预览插件。 如果您编写了HTML代码,但无法直观看到其在浏览器中的实际渲染效果,则可能是由于文件未正确保存、未使用浏览器打开或文件扩展名设置错误…

    2025年12月23日
    400
  • html5怎么加php_html5用Ajax与PHP后端交互实现数据传递【交互】

    HTML5不能直接运行PHP,需通过Ajax与PHP通信:前端用fetch发送请求,PHP接收处理并返回JSON,前端解析响应更新DOM;注意跨域、编码、CSRF防护和输入过滤。 HTML5 本身是前端标记语言,不能直接运行 PHP 代码,但可以通过 Ajax(异步 JavaScript)与 PHP…

    2025年12月23日
    300
  • html5 js怎么加_html5用script标签内嵌或外链引入JS代码【添加】

    在HTML5中执行JavaScript需通过script标签:一、内联编写于head或body中;二、外链引入.js文件并建议放body末尾或加defer;三、defer按序执行,async独立执行;四、可动态创建script元素插入执行。 如果您希望在HTML5页面中执行JavaScript代码,…

    2025年12月23日
    000
  • node.js怎么运行html_node.js运行html步骤【指南】

    答案是使用Node.js内置http模块、Express框架或第三方工具serve可快速搭建服务器预览HTML文件。首先通过http模块创建服务器并读取index.html返回响应;其次用Express初始化项目并配置静态文件服务;最后利用serve工具全局安装后一键启动服务器,三种方式均在浏览器访…

    2025年12月23日
    300
  • html5能否插入带表单的文档_html5表单文档嵌入与数据提交【步骤】

    HTML5中无法直接嵌入外部带表单的HTML文档并原生提交;可行方案有四:一、用iframe嵌入,需同源或CORS支持,并用postMessage通信;二、用fetch+DOMParser动态加载表单片段并手动绑定事件;三、在当前页面直接编写表单,最规范且兼容性好;四、用JavaScript+fet…

    2025年12月23日
    000
  • 360怎么装html5_360浏览器默认支持HTML5无需额外安装设置【说明】

    HTML5是网页标准,非独立软件,360浏览器7.0+已原生支持;需确认内核为Blink/Chromium、关闭兼容模式、禁用强制兼容策略、重置Flash插件、清除HTML5本地存储、检查系统Media Foundation组件。 如果您在使用360浏览器时发现HTML5网页功能异常(如视频无法播放…

    2025年12月23日
    000
  • html5怎么打包运行_HT5用Webpack或Gulp打包后浏览器打开运行【打包】

    应通过 HTTP 服务运行打包后的 HTML5 页面,而非双击打开:一、Webpack 配 webpack-dev-server 启动本地服务;二、Gulp 配 BrowserSync 提供实时重载;三、用 Python/Node.js 轻量 HTTP 工具托管 dist 目录;四、仅当必须双击运行…

    2025年12月23日
    000
  • html5文件运行不出来怎么回事_析html5文件运行失败原因【解析】

    首先检查文件扩展名和编码格式,确保为.html且使用UTF-8编码;接着验证HTML5结构完整性,包含及正确闭合的标签;然后排查外部资源路径是否正确,利用开发者工具查看404错误;排除浏览器兼容性问题,优先在现代浏览器中测试并避免未广泛支持的API;检查JavaScript语法错误与执行顺序,确保脚…

    2025年12月23日
    000
  • html如何滑动_实现HTML页面或元素滑动效果【效果】

    可通过CSS scroll-behavior实现平滑锚点跳转,JavaScript scrollTo精确控制滚动位置,CSS transform模拟高性能滑动动画,或使用Swiper等第三方库实现触摸拖拽、循环播放等高级交互功能。 如果您希望在网页中实现页面或特定元素的滑动效果,可以通过CSS和Ja…

    2025年12月23日
    000

发表回复

登录后才能评论
关注微信