Polars DataFrame 余弦相似度矩阵的构建方法

Polars DataFrame 余弦相似度矩阵的构建方法

本教程详细介绍了如何在 Polars DataFrame 中高效计算列表类型列之间的余弦相似度,并将其结果转换为一个类似相关系数矩阵的宽格式 DataFrame。文章将通过 join_where 生成数据组合,利用 Polars 原生表达式计算余弦相似度,并最终通过 pivot 操作构建出完整的对称相似度矩阵。

引言

在数据分析和机器学习领域,我们经常需要计算数据点之间的相似度。当数据以向量(或列表)的形式存储在 dataframe 的列中时,余弦相似度是一种常用的度量标准。polars 作为一种高性能的 dataframe 库,提供了强大的表达式引擎来处理这类计算。然而,直接将自定义的 python 函数应用于 polars 的聚合操作(如 pivot)可能会遇到 attributeerror: ‘function’ object has no attribute ‘_pyexpr’ 等问题,这通常是因为 polars 期望接收其内部表达式而不是普通的 python 函数。本文将展示如何利用 polars 的原生特性,优雅地解决这一问题,从而生成一个完整的余弦相似度矩阵。

数据准备

首先,我们定义一个包含列表数据的 Polars DataFrame,这是我们进行相似度计算的基础。

import polars as plfrom numpy.linalg import norm # 虽然这里引入了norm,但在Polars原生表达式中我们有更优解data = {    "col1": ["a", "b", "c", "d"],    "col2": [[-0.06066, 0.072485, 0.548874, 0.158507],             [-0.536674, 0.10478, 0.926022, -0.083722],             [-0.21311, -0.030623, 0.300583, 0.261814],             [-0.308025, 0.006694, 0.176335, 0.533835]],}df = pl.DataFrame(data)print("原始 DataFrame:")print(df)

输出:

原始 DataFrame:shape: (4, 2)┌──────┬─────────────────────────────────┐│ col1 ┆ col2                            ││ ---  ┆ ---                             ││ str  ┆ list[f64]                       │╞══════╪═════════════════════════════════╡│ a    ┆ [-0.06066, 0.072485, … 0.15850… ││ b    ┆ [-0.536674, 0.10478, … -0.0837… ││ c    ┆ [-0.21311, -0.030623, … 0.2618… ││ d    ┆ [-0.308025, 0.006694, … 0.5338… │└──────┴─────────────────────────────────┘

我们的目标是计算 col1 中每个唯一值(例如 ‘a’, ‘b’, ‘c’, ‘d’)对应的 col2 列表之间的余弦相似度,并最终生成一个交叉矩阵。

Polars 中的余弦相似度计算原理

余弦相似度的数学公式为:$ text{cosine_similarity}(A, B) = frac{A cdot B}{|A| cdot |B|} $其中,$A cdot B$ 是向量 $A$ 和 $B$ 的点积,$|A|$ 和 $|B|$ 分别是向量 $A$ 和 $B$ 的欧几里得范数(L2 范数)。

在 Polars 中,我们可以将这个公式转化为表达式。值得注意的是,从 Polars 1.8.0 版本开始,Polars 引入了原生的列表算术操作,使得余弦相似度的计算更加高效和简洁。

# 定义 Polars 表达式形式的余弦相似度函数def calculate_cosine_similarity_expr(x: pl.Expr, y: pl.Expr) -> pl.Expr:    """    计算两个列表列之间的余弦相似度 Polars 表达式。    要求 Polars 版本 >= 1.8.0 以获得最佳性能。    """    dot_product = (x * y).list.sum()    norm_x = (x * x).list.sum().sqrt()    norm_y = (y * y).list.sum().sqrt()    return dot_product / (norm_x * norm_y)# 示例使用:# cosine_similarity_expr = calculate_cosine_similarity_expr(pl.col("col2"), pl.col("col2_right"))

这个表达式利用了 Polars 的列表乘法 (x * y) 来实现元素级别的乘积,然后通过 list.sum() 求和得到点积。欧几里得范数通过 (x * x).list.sum().sqrt() 来计算。这种方式完全在 Polars 的表达式引擎中执行,避免了 Python UDF 的性能开销。

生成数据组合

为了计算所有可能的 pairwise 相似度,我们需要将 DataFrame 中的每一行与所有其他行(包括自身)进行组合。with_row_index() 和 join_where() 是实现这一目标的强大工具

添加行索引: 使用 with_row_index() 为每一行添加一个唯一的索引。条件连接: 使用 join_where() 进行自连接,并设置条件 pl.col.index

# 转换为 lazy DataFrame 以优化性能lazy_df = df.with_row_index().lazy()# 生成组合combinations_df = lazy_df.join_where(lazy_df, pl.col.index <= pl.col.index_right).collect()print("n生成的所有组合 (部分):")print(combinations_df.head())

输出:

生成的所有组合 (部分):shape: (5, 6)┌───────┬──────┬─────────────────────────────────┬─────────────┬────────────┬─────────────────────────────────┐│ index ┆ col1 ┆ col2                            ┆ index_right ┆ col1_right ┆ col2_right                      ││ ---   ┆ ---  ┆ ---                             ┆ ---         ┆ ---        ┆ ---                             ││ u32   ┆ str  ┆ list[f64]                       ┆ u32         ┆ str        ┆ list[f64]                       │╞═══════╪══════╪═════════════════════════════════╪═════════════╪════════════╪═════════════════════════════════╡│ 0     ┆ a    ┆ [-0.06066, 0.072485, … 0.15850… ┆ 0           ┆ a          ┆ [-0.06066, 0.072485, … 0.15850… ││ 0     ┆ a    ┆ [-0.06066, 0.072485, … 0.15850… ┆ 1           ┆ b          ┆ [-0.536674, 0.10478, … -0.0837… ││ 0     ┆ a    ┆ [-0.06066, 0.072485, … 0.15850… ┆ 2           ┆ c          ┆ [-0.21311, -0.030623, … 0.2618… ││ 0     ┆ a    ┆ [-0.06066, 0.072485, … 0.15850… ┆ 3           ┆ d          ┆ [-0.308025, 0.006694, … 0.5338… ││ 1     ┆ b    ┆ [-0.536674, 0.10478, … -0.0837… ┆ 1           ┆ b          ┆ [-0.536674, 0.10478, … -0.0837… │└───────┴──────┴─────────────────────────────────┴─────────────┴────────────┴─────────────────────────────────┘

这个 DataFrame 包含了所有需要计算相似度的向量对。col2 和 col2_right 分别代表了组合中的两个向量。

计算所有组合的余弦相似度

现在,我们将上面定义的余弦相似度表达式应用于 combinations_df 中的 col2 和 col2_right 列。

# 计算余弦相似度similarity_results = (    lazy_df.join_where(lazy_df, pl.col.index <= pl.col.index_right)    .select(        col="col1",        other="col1_right",        cosine=calculate_cosine_similarity_expr(            x=pl.col.col2,            y=pl.col.col2_right        )    )).collect()print("n计算出的余弦相似度 (部分):")print(similarity_results)

输出:

计算出的余弦相似度 (部分):shape: (10, 3)┌─────┬───────┬──────────┐│ col ┆ other ┆ cosine   ││ --- ┆ ---   ┆ ---      ││ str ┆ str   ┆ f64      │╞═════╪═══════╪══════════╡│ a   ┆ a     ┆ 1.0      ││ a   ┆ b     ┆ 0.856754 ││ a   ┆ c     ┆ 0.827877 ││ a   ┆ d     ┆ 0.540282 ││ b   ┆ b     ┆ 1.0      ││ b   ┆ c     ┆ 0.752199 ││ b   ┆ d     ┆ 0.411564 ││ c   ┆ c     ┆ 1.0      ││ c   ┆ d     ┆ 0.889009 ││ d   ┆ d     ┆ 1.0      │└─────┴───────┴──────────┘

similarity_results DataFrame 包含了每对 col1 值的余弦相似度。由于我们使用了 index

构建相似度矩阵

为了得到一个完整的对称相似度矩阵,我们需要处理非对角线元素的对称性(即 cosine(A, B) 等于 cosine(B, A))。我们可以通过以下步骤完成:

复制并反转非对角线元素: 筛选出 col != other 的行,然后交换 col 和 other 列的值,形成反向的组合。合并结果: 将原始的 similarity_results 与反转后的结果合并。透视: 使用 pivot() 方法将数据从长格式转换为宽格式,形成最终的矩阵。

final_similarity_matrix = (    pl.concat(        [            similarity_results,            # 筛选非对角线元素,并反转 col 和 other            similarity_results.filter(pl.col.col != pl.col.other)                               .select(col="other", other="col", cosine="cosine")        ]    )    .pivot(        values="cosine",        index="col",        columns="other"    ))print("n最终的余弦相似度矩阵:")print(final_similarity_matrix)

输出:

最终的余弦相似度矩阵:shape: (4, 5)┌─────┬──────────┬──────────┬──────────┬──────────┐│ col ┆ a        ┆ b        ┆ c        ┆ d        ││ --- ┆ ---      ┆ ---      ┆ ---      ┆ ---      ││ str ┆ f64      ┆ f64      ┆ f64      ┆ f64      │╞═════╪══════════╪══════════╪══════════╪══════════╡│ a   ┆ 1.0      ┆ 0.856754 ┆ 0.827877 ┆ 0.540282 ││ b   ┆ 0.856754 ┆ 1.0      ┆ 0.752199 ┆ 0.411564 ││ c   ┆ 0.827877 ┆ 0.752199 ┆ 1.0      ┆ 0.889009 ││ d   ┆ 0.540282 ┆ 0.411564 ┆ 0.889009 ┆ 1.0      │└─────┴──────────┴──────────┴──────────┴──────────┘

现在我们得到了一个与期望输出完全一致的余弦相似度矩阵,其中行和列都由 col1 的唯一值表示,矩阵中的每个元素代表相应两个向量的余弦相似度。

注意事项与性能优化

Polars 版本: 上述余弦相似度表达式利用了 Polars 1.8.0 及更高版本中引入的原生列表算术功能。如果使用较旧的 Polars 版本,可能需要采用不同的方法(例如使用 apply 配合 Python UDF,但这会牺牲性能)。强烈建议升级到最新版本的 Polars 以获得最佳性能和功能。避免 Python UDFs: 尽量避免在 Polars 中使用 Python 用户自定义函数(UDFs),尤其是在性能敏感的场景。Polars 的表达式引擎经过高度优化,能够利用多核并行计算,而 UDFs 会强制数据在 Polars 内部和 Python 解释器之间来回移动,导致性能下降。本教程中的方法完全避免了 UDFs。惰性计算 (.lazy()): 在处理大型数据集时,将 DataFrame 转换为惰性模式 (.lazy()) 可以让 Polars 优化查询计划,从而提高内存效率和执行速度。在最终 collect() 之前,Polars 不会实际执行计算。内存管理: 对于非常大的数据集,生成所有组合可能会消耗大量内存。join_where 配合 lazy() 已经相对高效,但仍需注意数据集大小。

总结

本教程展示了在 Polars 中构建余弦相似度矩阵的完整流程。通过巧妙地结合 with_row_index()、join_where() 生成数据组合,利用 Polars 原生表达式高效计算余弦相似度,并最终通过 pl.concat() 和 pivot() 将结果转换为易于理解的矩阵形式。这种方法不仅解决了直接使用 Python 函数作为聚合器时的错误,而且充分利用了 Polars 的高性能特性,为处理大规模向量相似度计算提供了专业且高效的解决方案。

以上就是Polars DataFrame 余弦相似度矩阵的构建方法的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1376735.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 16:09:32
下一篇 2025年12月14日 16:09:48

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 旋转长方形后,如何计算其相对于画布左上角的轴距?

    绘制长方形并旋转,计算旋转后轴距 在拥有 1920×1080 画布中,放置一个宽高为 200×20 的长方形,其坐标位于 (100, 100)。当以任意角度旋转长方形时,如何计算它相对于画布左上角的 x、y 轴距? 以下代码提供了一个计算旋转后长方形轴距的解决方案: const x = 200;co…

    2025年12月24日
    000
  • 旋转长方形后,如何计算它与画布左上角的xy轴距?

    旋转后长方形在画布上的xy轴距计算 在画布中添加一个长方形,并将其旋转任意角度,如何计算旋转后的长方形与画布左上角之间的xy轴距? 问题分解: 要计算旋转后长方形的xy轴距,需要考虑旋转对长方形宽高和位置的影响。首先,旋转会改变长方形的长和宽,其次,旋转会改变长方形的中心点位置。 求解方法: 计算旋…

    2025年12月24日
    000
  • 旋转长方形后如何计算其在画布上的轴距?

    旋转长方形后计算轴距 假设长方形的宽、高分别为 200 和 20,初始坐标为 (100, 100),我们将它旋转一个任意角度。根据旋转矩阵公式,旋转后的新坐标 (x’, y’) 可以通过以下公式计算: x’ = x * cos(θ) – y * sin(θ)y’ = x * …

    2025年12月24日
    000
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 如何计算旋转后长方形在画布上的轴距?

    旋转后长方形与画布轴距计算 在给定的画布中,有一个长方形,在随机旋转一定角度后,如何计算其在画布上的轴距,即距离左上角的距离? 以下提供一种计算长方形相对于画布左上角的新轴距的方法: const x = 200; // 初始 x 坐标const y = 90; // 初始 y 坐标const w =…

    2025年12月24日
    200
  • CSS元素设置em和transition后,为何载入页面无放大效果?

    css元素设置em和transition后,为何载入无放大效果 很多开发者在设置了em和transition后,却发现元素载入页面时无放大效果。本文将解答这一问题。 原问题:在视频演示中,将元素设置如下,载入页面会有放大效果。然而,在个人尝试中,并未出现该效果。这是由于macos和windows系统…

    2025年12月24日
    200
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 如何计算旋转后的长方形在画布上的 XY 轴距?

    旋转长方形后计算其画布xy轴距 在创建的画布上添加了一个长方形,并提供其宽、高和初始坐标。为了视觉化旋转效果,还提供了一些旋转特定角度后的图片。 问题是如何计算任意角度旋转后,这个长方形的xy轴距。这涉及到使用三角学来计算旋转后的坐标。 以下是一个 javascript 代码示例,用于计算旋转后长方…

    2025年12月24日
    000
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信