PyTorch参数更新不明显?深度解析学习率与梯度尺度的影响

pytorch参数更新不明显?深度解析学习率与梯度尺度的影响

在使用PyTorch进行模型训练时,开发者有时会遇到参数看似没有更新的问题,即使已正确调用优化器。本文将深入探讨这一常见现象,揭示其背后往往是学习率设置过低,导致参数更新幅度相对于参数自身值或梯度而言微不足道。我们将通过代码示例和详细分析,演示如何诊断并解决此类问题,强调学习率在优化过程中的关键作用。

PyTorch参数优化机制概述

在PyTorch中,模型的参数更新是深度学习训练的核心环节。一个典型的优化循环包括以下几个关键步骤:

梯度清零 (optimizer.zero_grad()): 在每次反向传播之前,需要将模型中所有可学习参数的梯度清零。这是因为PyTorch默认会累积梯度,如果不清零,每次迭代的梯度会叠加。前向传播: 模型接收输入数据,进行计算,产生输出。计算损失 (loss.backward()): 根据模型输出和目标值计算损失,并通过loss.backward()方法进行反向传播,计算出所有可学习参数的梯度。参数更新 (optimizer.step()): 优化器根据计算出的梯度和设定的学习率,更新模型的参数。例如,对于随机梯度下降(SGD),参数更新公式通常为 param = param – learning_rate * grad。

当开发者遵循这些步骤,但仍然观察到参数没有明显变化时,问题可能并非出在代码逻辑错误,而在于优化过程的细节。

诊断参数更新不明显的问题

考虑以下PyTorch优化代码示例,它尝试优化一组“份额”(shares)以匹配目标权重:

import torchimport numpy as npnp.random.seed(10)def optimize(final_shares: torch.Tensor, target_weight, prices, loss_func=None):    # 确保份额非负    final_shares = final_shares.clamp(0.)    # 计算市值    mv = torch.multiply(final_shares, prices)    # 计算权重    w = torch.div(mv, torch.sum(mv))    # print(w) # 调试时可以打印权重    return loss_func(w, target_weight)def main():    position_count = 16    cash_buffer = .001    starting_shares = torch.tensor(np.random.uniform(low=1, high=50, size=position_count), dtype=torch.float64)    prices = torch.tensor(np.random.uniform(low=1, high=100, size=position_count), dtype=torch.float64)    prices[-1] = 1.    # 定义可学习参数    x_param = torch.nn.Parameter(starting_shares, requires_grad=True)    # 定义目标权重    target_weights = ((1 - cash_buffer) / (position_count - 1))    target_weights_vec = [target_weights] * (position_count - 1)    target_weights_vec.append(cash_buffer)    target_weights_vec = torch.tensor(target_weights_vec, dtype=torch.float64)    # 定义损失函数    loss_func = torch.nn.MSELoss()    # 初始化优化器,学习率 eta 设置为 0.01    eta = 0.01     optimizer = torch.optim.SGD([x_param], lr=eta)    print(f"初始参数 x_param: {x_param.data[:5]}") # 打印前5个初始参数    initial_loss = optimize(final_shares=x_param, target_weight=target_weights_vec,                            prices=prices, loss_func=loss_func)    print(f"初始损失: {initial_loss.item():.6f}")    for epoch in range(10000):        optimizer.zero_grad()        loss_incurred = optimize(final_shares=x_param, target_weight=target_weights_vec,                                 prices=prices, loss_func=loss_func)        loss_incurred.backward()        # 可以在此处打印梯度信息进行调试        # if epoch % 1000 == 0:        #     print(f"Epoch {epoch}, Loss: {loss_incurred.item():.6f}, Avg Grad: {x_param.grad.abs().mean().item():.8f}")        #     print(f"x_param (before step): {x_param.data[:5]}")        optimizer.step()        # if epoch % 1000 == 0:        #     print(f"x_param (after step): {x_param.data[:5]}")    final_loss = optimize(final_shares=x_param.data, target_weight=target_weights_vec,                          prices=prices, loss_func=loss_func)    print(f"最终参数 x_param: {x_param.data[:5]}") # 打印前5个最终参数    print(f"最终损失: {final_loss.item():.6f}")if __name__ == '__main__':    main()

运行上述代码,你会发现x_param的值在10000个epoch后几乎没有变化,损失值也只是略微下降。这让人误以为参数没有更新。

根本原因:学习率与梯度尺度的不匹配

问题的核心在于学习率(learning_rate或lr)与梯度(grad)以及参数自身尺度的不匹配

参数更新的幅度由 learning_rate * grad 决定。如果这个乘积非常小,即使参数确实在更新,其变化也可能微乎其微,以至于在视觉上或通过打印参数值时难以察觉。

在上述示例中:

平均梯度幅度:经过分析,该代码中的平均梯度幅度可能在 1e-5 左右。学习率 eta:被设置为 0.01。每次参数更新的平均幅度:eta * grad = 0.01 * 1e-5 = 1e-7。参数 x_param 的平均值:大约在 24 左右。

这意味着,每次迭代参数的平均变化量仅为 1e-7。要使一个平均值为 24 的参数值发生 1 单位的变化,大约需要 24 / 1e-7 = 2.4 * 10^8 次迭代。而代码中只有 10000 次迭代,因此参数的变化量是极其微小的,几乎可以忽略不计。

解决方案:调整学习率

解决这个问题最直接有效的方法是调整学习率。如果学习率过低导致更新不明显,那么就需要适当提高学习率。

将eta从0.01调整为100,观察参数的变化:

# ... (代码省略,与上文相同的部分) ...    # 初始化优化器,学习率 eta 调整为 100    eta = 100     optimizer = torch.optim.SGD([x_param], lr=eta)    print(f"初始参数 x_param: {x_param.data[:5]}")    initial_loss = optimize(final_shares=x_param, target_weight=target_weights_vec,                            prices=prices, loss_func=loss_func)    print(f"初始损失: {initial_loss.item():.6f}")    for epoch in range(10000):        optimizer.zero_grad()        loss_incurred = optimize(final_shares=x_param, target_weight=target_weights_vec,                                 prices=prices, loss_func=loss_func)        loss_incurred.backward()        optimizer.step()        # 打印中间结果以便观察        if epoch % 1000 == 0 or epoch == 9999:            print(f"Epoch {epoch}, Loss: {loss_incurred.item():.6f}, Avg Grad: {x_param.grad.abs().mean().item():.8f}")            print(f"x_param (after step, first 5): {x_param.data[:5]}")    final_loss = optimize(final_shares=x_param.data, target_weight=target_weights_vec,                          prices=prices, loss_func=loss_func)    print(f"最终参数 x_param: {x_param.data[:5]}")    print(f"最终损失: {final_loss.item():.6f}")# ... (main 函数和 if __name__ == '__main__': 保持不变) ...

通过将学习率提高到100,每次参数更新的平均幅度将变为 100 * 1e-5 = 1e-3。这个更新幅度相对于参数的原始值 24 来说已经显著得多,因此在10000次迭代后,参数和损失值都会有明显的、可观察到的变化。

注意事项与最佳实践

学习率是关键超参数:学习率是深度学习中最重要也最难调优的超参数之一。过低会导致训练缓慢或停滞,过高则可能导致训练不稳定,损失震荡甚至发散。学习率搜索:在实际应用中,通常需要通过实验来找到合适的学习率。常用的方法包括:网格搜索/随机搜索:尝试不同数量级的学习率。学习率范围测试 (LR Range Test):从一个非常小的学习率开始,逐渐增大,并记录损失变化,以找到最佳范围。学习率调度器 (Learning Rate Schedulers):在训练过程中动态调整学习率,例如torch.optim.lr_scheduler.StepLR, CosineAnnealingLR等。梯度检查:在调试阶段,打印或记录参数的梯度值(param.grad)和参数值(param.data)是非常有用的。这可以帮助你了解梯度的尺度,从而判断学习率是否合理。优化器选择:不同的优化器(如SGD、Adam、RMSprop等)对学习率的敏感度不同。Adam等自适应学习率优化器通常对初始学习率的选择不那么敏感,但在某些情况下,SGD配合精心调优的学习率调度器可能达到更好的性能。损失函数尺度:如果损失函数的值非常大或非常小,也可能影响梯度的尺度,进而影响学习率的选择。数值稳定性:在某些情况下,过大的学习率可能导致数值溢出或下溢,造成NaN或inf的损失值。

总结

当PyTorch模型参数看似没有更新时,首先应检查优化循环的逻辑是否正确。如果逻辑无误,那么最常见的原因是学习率设置过低。通过理解参数更新的机制(param = param – learning_rate * grad),我们可以推断出,当learning_rate * grad的乘积相对于参数的原始尺度过小时,参数的变化将难以察觉。通过适当调整学习率,通常可以有效解决这一问题。在实践中,合理地选择和调整学习率是模型训练成功的关键一步。

以上就是PyTorch参数更新不明显?深度解析学习率与梯度尺度的影响的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1379235.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 20:28:57
下一篇 2025年12月14日 20:29:12

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 旋转长方形后,如何计算其相对于画布左上角的轴距?

    绘制长方形并旋转,计算旋转后轴距 在拥有 1920×1080 画布中,放置一个宽高为 200×20 的长方形,其坐标位于 (100, 100)。当以任意角度旋转长方形时,如何计算它相对于画布左上角的 x、y 轴距? 以下代码提供了一个计算旋转后长方形轴距的解决方案: const x = 200;co…

    2025年12月24日
    000
  • 旋转长方形后,如何计算它与画布左上角的xy轴距?

    旋转后长方形在画布上的xy轴距计算 在画布中添加一个长方形,并将其旋转任意角度,如何计算旋转后的长方形与画布左上角之间的xy轴距? 问题分解: 要计算旋转后长方形的xy轴距,需要考虑旋转对长方形宽高和位置的影响。首先,旋转会改变长方形的长和宽,其次,旋转会改变长方形的中心点位置。 求解方法: 计算旋…

    2025年12月24日
    000
  • 旋转长方形后如何计算其在画布上的轴距?

    旋转长方形后计算轴距 假设长方形的宽、高分别为 200 和 20,初始坐标为 (100, 100),我们将它旋转一个任意角度。根据旋转矩阵公式,旋转后的新坐标 (x’, y’) 可以通过以下公式计算: x’ = x * cos(θ) – y * sin(θ)y’ = x * …

    2025年12月24日
    000
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 如何计算旋转后长方形在画布上的轴距?

    旋转后长方形与画布轴距计算 在给定的画布中,有一个长方形,在随机旋转一定角度后,如何计算其在画布上的轴距,即距离左上角的距离? 以下提供一种计算长方形相对于画布左上角的新轴距的方法: const x = 200; // 初始 x 坐标const y = 90; // 初始 y 坐标const w =…

    2025年12月24日
    200
  • CSS元素设置em和transition后,为何载入页面无放大效果?

    css元素设置em和transition后,为何载入无放大效果 很多开发者在设置了em和transition后,却发现元素载入页面时无放大效果。本文将解答这一问题。 原问题:在视频演示中,将元素设置如下,载入页面会有放大效果。然而,在个人尝试中,并未出现该效果。这是由于macos和windows系统…

    2025年12月24日
    200
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 如何计算旋转后的长方形在画布上的 XY 轴距?

    旋转长方形后计算其画布xy轴距 在创建的画布上添加了一个长方形,并提供其宽、高和初始坐标。为了视觉化旋转效果,还提供了一些旋转特定角度后的图片。 问题是如何计算任意角度旋转后,这个长方形的xy轴距。这涉及到使用三角学来计算旋转后的坐标。 以下是一个 javascript 代码示例,用于计算旋转后长方…

    2025年12月24日
    000
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信