深入理解A算法:单队列实现的巧妙之处

深入理解A算法:单队列实现的巧妙之处

本文深入探讨a*路径搜索算法的一种单队列实现方式。许多a*伪代码会同时使用open列表(优先队列)和closed列表(集合),而该实现仅依赖一个优先队列。我们将解析其工作原理,揭示如何通过巧妙地利用节点的分数(g_score和f_score)以及优先队列的特性,隐式地管理已访问节点的状态,从而无需显式的closed集合,仍能确保算法的正确性和效率。

A*算法核心原理

A*算法是一种启发式搜索算法,广泛应用于路径规划和图搜索问题。它通过评估每个节点的总成本(f_score)来指导搜索方向,f_score由两部分组成:

g_score: 从起始节点到当前节点的实际路径成本。h_score: 从当前节点到目标节点的估计启发式成本(通常为曼哈顿距离、欧几里得距离等)。

总成本公式为:f_score = g_score + h_score。A*算法总是优先探索f_score最低的节点。

传统A*算法中的OPEN与CLOSED列表

在许多A*算法的伪代码描述中,通常会维护两个核心数据结构:

OPEN列表 (优先队列):存储所有待探索的节点。节点根据其f_score进行优先级排序,f_score越低,优先级越高。算法每次从OPEN列表中取出f_score最低的节点进行扩展。CLOSED列表 (集合):存储所有已经完成探索的节点。其主要作用是避免重复处理已经扩展过的节点,防止形成循环路径,并提高效率。一旦节点进入CLOSED列表,通常认为其最佳路径已找到。

当找到一条通往某个节点的更优路径时,如果该节点已在OPEN列表中,会更新其g_score和f_score并调整其在优先队列中的位置;如果该节点已在CLOSED列表中,则需要将其从CLOSED列表中移除并重新加入OPEN列表(或直接更新其在OPEN列表中的信息,如果它也被重新加入)。

单队列A*算法实现的分析

以下是一个使用Python实现的A*算法示例,它仅使用一个优先队列open,而没有显式的CLOSED集合:

from pyamaze import maze,agent,textLabelfrom queue import PriorityQueuedef h(cell1,cell2):    """计算曼哈顿距离作为启发式函数"""    x1,y1=cell1    x2,y2=cell2    return abs(x1-x2) + abs(y1-y2)def aStar(m):    start=(m.rows,m.cols)    # g_score: 从起点到某个单元格的实际成本    g_score={cell:float('inf') for cell in m.grid}    g_score[start]=0    # f_score: g_score + h_score    f_score={cell:float('inf') for cell in m.grid}    f_score[start]=h(start,(1,1)) # 目标点为(1,1)    # open: 优先队列,存储待探索的节点    # 存储格式为 (f_score, h_score_for_tie_breaking, cell)    open=PriorityQueue()    open.put((h(start,(1,1)),h(start,(1,1)),start))    aPath={} # 存储路径,childCell:currCell    while not open.empty():        currCell=open.get()[2] # 获取f_score最低的节点        if currCell==(1,1): # 到达目标点            break        # 遍历当前节点的所有邻居        for d in 'ESNW': # 东、南、西、北            if m.maze_map[currCell][d]==True: # 如果存在通路                # 计算邻居单元格的坐标                if d=='E':                    childCell=(currCell[0],currCell[1]+1)                if d=='W':                    childCell=(currCell[0],currCell[1]-1)                if d=='N':                    childCell=(currCell[0]-1,currCell[1])                if d=='S':                    childCell=(currCell[0]+1,currCell[1])                # 计算到达邻居单元格的临时g_score和f_score                temp_g_score=g_score[currCell]+1 # 假设每一步成本为1                temp_f_score=temp_g_score+h(childCell,(1,1))                # 如果通过当前路径到达邻居单元格的f_score更低,则更新                if temp_f_score < f_score[childCell]:                    g_score[childCell]= temp_g_score                    f_score[childCell]= temp_f_score                    open.put((temp_f_score,h(childCell,(1,1)),childCell)) # 将邻居加入优先队列                    aPath[childCell]=currCell # 记录路径    # 路径重建    fwdPath={}    cell=(1,1)    while cell!=start:        fwdPath[aPath[cell]]=cell        cell=aPath[cell]    return fwdPathif __name__=='__main__':    m=maze(5,5)    m.CreateMaze()    path=aStar(m)    a=agent(m,footprints=True)    m.tracePath({a:path})    l=textLabel(m,'A Star Path Length',len(path)+1)    m.run()

CLOSED集的隐式处理

该实现之所以能够仅使用一个优先队列,其核心在于对g_score和f_score的巧妙运用,以及优先队列的特性:

初始化为无穷大:

g_score和f_score字典中的所有单元格最初都被初始化为float(‘inf’)。这表示这些节点尚未被访问或其路径成本未知。当一个节点被首次访问(即从优先队列中取出并扩展,或者作为邻居被发现),它的g_score和f_score会被更新为实际计算出的值。此时,该节点就从“未访问”状态转变为“已访问”状态。

通过f_score更新实现“重访”:

在主循环中,当算法遍历当前节点的邻居childCell时,会计算通过当前路径到达childCell的临时temp_f_score。关键判断是:if temp_f_score 如果这个条件为真,意味着通过当前路径找到了到达childCell的更优路径(f_score更低)。此时,无论childCell是第一次被发现、已经在优先队列中,还是之前已经被弹出并处理过(但现在找到了更好的路径),都会更新其g_score和f_score,并将其重新放入优先队列open中。这种机制有效地取代了传统A*算法中显式管理CLOSED集合的逻辑。如果一个节点已经被处理过并被认为是“关闭”的,但随后发现了一条更好的路径,它会被“重新打开”并再次加入优先队列进行评估。由于优先队列会始终优先处理f_score最低的节点,因此最终总能找到最优路径。

与传统伪代码的对比

传统的A*伪代码通常会明确检查节点是否在OPEN或CLOSED列表中,并根据情况进行移除或添加。例如:

if neighbor in OPEN and cost less than g(neighbor):  remove neighbor from OPEN, because new path is betterif neighbor in CLOSED and cost less than g(neighbor):  remove neighbor from CLOSEDif neighbor not in OPEN and neighbor not in CLOSED:  set g(neighbor) to cost  add neighbor to OPEN

与此相比,单队列实现更为简洁。它避免了在OPEN列表中查找和删除节点的复杂性(Python的PriorityQueue本身不支持高效的删除任意元素),而是选择:如果找到更好的路径,就直接将新信息(包含更低f_score的节点)再次放入优先队列。即使同一个节点在队列中出现多次,由于我们总是从队列中取出f_score最低的节点,并且只有当temp_f_score

实现细节与注意事项

g_score和f_score字典: 这两个字典是算法状态的核心。它们不仅存储了路径成本,还隐式地表示了节点是否已被“访问”或“更新”。启发式函数h(): 曼哈顿距离(abs(x1-x2) + abs(y1-y2))是网格图中常用的可接受且一致的启发式函数,它保证了A*算法能找到最优路径。优先队列的元素: open.put((temp_f_score, h(childCell,(1,1)), childCell))中的元组设计是关键。第一个元素temp_f_score是主要优先级。第二个元素h(childCell,(1,1))作为次要优先级,用于在f_score相同的情况下进行 tie-breaking,确保行为一致。第三个元素childCell是实际要处理的节点。路径重建: aPath字典记录了从子节点到父节点的映射,通过反向追溯可以重建从起点到目标点的完整路径。内存与性能:这种单队列实现可能导致优先队列中包含同一个节点的多个副本,每个副本对应一条不同的路径成本。理论上,这可能略微增加内存使用和队列操作的开销。然而,由于每次只处理f_score最低的节点,并且f_score字典会确保我们总是基于已知的最佳路径进行扩展,因此冗余的节点最终会被忽略,不会影响算法的正确性。在实际应用中,这种简洁性往往优于微小的性能差异。

总结

A算法的单队列实现是一种有效且常见的策略。它通过将节点的分数(g_score和f_score)初始化为无穷大,并在发现更优路径时更新这些分数并重新将节点加入优先队列,从而隐式地管理了传统A算法中CLOSED集合的功能。这种方法简化了代码结构,避免了对CLOSED集合的显式维护和查找操作,同时仍能保证算法找到最优路径。理解这种实现方式的关键在于认识到f_score的更新机制以及优先队列的特性,它们共同协作,确保了算法的正确性和效率。

以上就是深入理解A算法:单队列实现的巧妙之处的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/1382496.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年12月14日 23:58:30
下一篇 2025年12月14日 23:58:44

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 旋转长方形后,如何计算其相对于画布左上角的轴距?

    绘制长方形并旋转,计算旋转后轴距 在拥有 1920×1080 画布中,放置一个宽高为 200×20 的长方形,其坐标位于 (100, 100)。当以任意角度旋转长方形时,如何计算它相对于画布左上角的 x、y 轴距? 以下代码提供了一个计算旋转后长方形轴距的解决方案: const x = 200;co…

    2025年12月24日
    000
  • 旋转长方形后,如何计算它与画布左上角的xy轴距?

    旋转后长方形在画布上的xy轴距计算 在画布中添加一个长方形,并将其旋转任意角度,如何计算旋转后的长方形与画布左上角之间的xy轴距? 问题分解: 要计算旋转后长方形的xy轴距,需要考虑旋转对长方形宽高和位置的影响。首先,旋转会改变长方形的长和宽,其次,旋转会改变长方形的中心点位置。 求解方法: 计算旋…

    2025年12月24日
    000
  • 旋转长方形后如何计算其在画布上的轴距?

    旋转长方形后计算轴距 假设长方形的宽、高分别为 200 和 20,初始坐标为 (100, 100),我们将它旋转一个任意角度。根据旋转矩阵公式,旋转后的新坐标 (x’, y’) 可以通过以下公式计算: x’ = x * cos(θ) – y * sin(θ)y’ = x * …

    2025年12月24日
    000
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 如何计算旋转后长方形在画布上的轴距?

    旋转后长方形与画布轴距计算 在给定的画布中,有一个长方形,在随机旋转一定角度后,如何计算其在画布上的轴距,即距离左上角的距离? 以下提供一种计算长方形相对于画布左上角的新轴距的方法: const x = 200; // 初始 x 坐标const y = 90; // 初始 y 坐标const w =…

    2025年12月24日
    200
  • CSS元素设置em和transition后,为何载入页面无放大效果?

    css元素设置em和transition后,为何载入无放大效果 很多开发者在设置了em和transition后,却发现元素载入页面时无放大效果。本文将解答这一问题。 原问题:在视频演示中,将元素设置如下,载入页面会有放大效果。然而,在个人尝试中,并未出现该效果。这是由于macos和windows系统…

    2025年12月24日
    200
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 如何计算旋转后的长方形在画布上的 XY 轴距?

    旋转长方形后计算其画布xy轴距 在创建的画布上添加了一个长方形,并提供其宽、高和初始坐标。为了视觉化旋转效果,还提供了一些旋转特定角度后的图片。 问题是如何计算任意角度旋转后,这个长方形的xy轴距。这涉及到使用三角学来计算旋转后的坐标。 以下是一个 javascript 代码示例,用于计算旋转后长方…

    2025年12月24日
    000
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信