@PublicEvolvingpublic abstract class WindowAssigner implements Serializable { private static final long serialVersionUID = 1L; /** * Returns a {@code Collection} of windows that should be assigned to the element. * * @param element The element to which windows should be assigned. * @param timestamp The timestamp of the element. * @param context The {@link WindowAssignerContext} in which the assigner operates. */ public abstract Collection assignWindows(T element, long timestamp, WindowAssignerContext context); /** * Returns the default trigger associated with this {@code WindowAssigner}. */ public abstract Trigger getDefaultTrigger(StreamExecutionEnvironment env); /** * Returns a {@link TypeSerializer} for serializing windows that are assigned by * this {@code WindowAssigner}. */ public abstract TypeSerializer getWindowSerializer(ExecutionConfig executionConfig); /** * Returns {@code true} if elements are assigned to windows based on event time, * {@code false} otherwise. */ public abstract boolean isEventTime(); /** * A context provided to the {@link WindowAssigner} that allows it to query the * current processing time. * *
This is provided to the assigner by its containing * {@link org.apache.flink.streaming.runtime.operators.windowing.WindowOperator}, * which, in turn, gets it from the containing * {@link org.apache.flink.streaming.runtime.tasks.StreamTask}. */ public abstract static class WindowAssignerContext { /** * Returns the current processing time. */ public abstract long getCurrentProcessingTime(); }}
@PublicEvolvingpublic abstract class Window { /** * Gets the largest timestamp that still belongs to this window. * * @return The largest timestamp that still belongs to this window. */ public abstract long maxTimestamp();}
@PublicEvolvingpublic class TimeWindow extends Window { private final long start; private final long end; public TimeWindow(long start, long end) { this.start = start; this.end = end; } /** * Gets the starting timestamp of the window. This is the first timestamp that belongs * to this window. * * @return The starting timestamp of this window. */ public long getStart() { return start; } /** * Gets the end timestamp of this window. The end timestamp is exclusive, meaning it * is the first timestamp that does not belong to this window any more. * * @return The exclusive end timestamp of this window. */ public long getEnd() { return end; } /** * Gets the largest timestamp that still belongs to this window. * *
This timestamp is identical to {@code getEnd() - 1}. * * @return The largest timestamp that still belongs to this window. * * @see #getEnd() */ @Override public long maxTimestamp() { return end - 1; } @Override public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } TimeWindow window = (TimeWindow) o; return end == window.end && start == window.start; } @Override public int hashCode() { return MathUtils.longToIntWithBitMixing(start + end); } @Override public String toString() { return "TimeWindow{" + "start=" + start + ", end=" + end + '}'; } /** * Returns {@code true} if this window intersects the given window. */ public boolean intersects(TimeWindow other) { return this.start = other.start; } /** * Returns the minimal window covers both this window and the given window. */ public TimeWindow cover(TimeWindow other) { return new TimeWindow(Math.min(start, other.start), Math.max(end, other.end)); } // ------------------------------------------------------------------------ // Serializer // ------------------------------------------------------------------------ //...... // ------------------------------------------------------------------------ // Utilities // ------------------------------------------------------------------------ /** * Merge overlapping {@link TimeWindow}s. For use by merging * {@link org.apache.flink.streaming.api.windowing.assigners.WindowAssigner WindowAssigners}. */ public static void mergeWindows(Collection windows, MergingWindowAssigner.MergeCallback c) { // sort the windows by the start time and then merge overlapping windows List sortedWindows = new ArrayList(windows); Collections.sort(sortedWindows, new Comparator() { @Override public int compare(TimeWindow o1, TimeWindow o2) { return Long.compare(o1.getStart(), o2.getStart()); } }); List<Tuple2<TimeWindow, Set>> merged = new ArrayList(); Tuple2<TimeWindow, Set> currentMerge = null; for (TimeWindow candidate: sortedWindows) { if (currentMerge == null) { currentMerge = new Tuple2(); currentMerge.f0 = candidate; currentMerge.f1 = new HashSet(); currentMerge.f1.add(candidate); } else if (currentMerge.f0.intersects(candidate)) { currentMerge.f0 = currentMerge.f0.cover(candidate); currentMerge.f1.add(candidate); } else { merged.add(currentMerge); currentMerge = new Tuple2(); currentMerge.f0 = candidate; currentMerge.f1 = new HashSet(); currentMerge.f1.add(candidate); } } if (currentMerge != null) { merged.add(currentMerge); } for (Tuple2<TimeWindow, Set> m: merged) { if (m.f1.size() > 1) { c.merge(m.f1, m.f0); } } } /** * Method to get the window start for a timestamp. * * @param timestamp epoch millisecond to get the window start. * @param offset The offset which window start would be shifted by. * @param windowSize The size of the generated windows. * @return window start */ public static long getWindowStartWithOffset(long timestamp, long offset, long windowSize) { return timestamp - (timestamp - offset + windowSize) % windowSize; }}
public class TumblingProcessingTimeWindows extends WindowAssigner { private static final long serialVersionUID = 1L; private final long size; private final long offset; private TumblingProcessingTimeWindows(long size, long offset) { if (offset = size) { throw new IllegalArgumentException("TumblingProcessingTimeWindows parameters must satisfy 0 <= offset < size"); } this.size = size; this.offset = offset; } @Override public Collection assignWindows(Object element, long timestamp, WindowAssignerContext context) { final long now = context.getCurrentProcessingTime(); long start = TimeWindow.getWindowStartWithOffset(now, offset, size); return Collections.singletonList(new TimeWindow(start, start + size)); } public long getSize() { return size; } @Override public Trigger getDefaultTrigger(StreamExecutionEnvironment env) { return ProcessingTimeTrigger.create(); } @Override public String toString() { return "TumblingProcessingTimeWindows(" + size + ")"; } public static TumblingProcessingTimeWindows of(Time size) { return new TumblingProcessingTimeWindows(size.toMilliseconds(), 0); } public static TumblingProcessingTimeWindows of(Time size, Time offset) { return new TumblingProcessingTimeWindows(size.toMilliseconds(), offset.toMilliseconds()); } @Override public TypeSerializer getWindowSerializer(ExecutionConfig executionConfig) { return new TimeWindow.Serializer(); } @Override public boolean isEventTime() { return false; }}
TumblingProcessingTimeWindows继承了WindowAssigner,其中元素类型为Object,而窗口类型为TimeWindow;它有两个参数,一个是size,一个是offset,其中offset必须大于等于0,size必须大于offsetassignWindows方法获取的窗口为start及start+size,而start=TimeWindow.getWindowStartWithOffset(now, offset, size),而now值则为context.getCurrentProcessingTime(),则是与TumblingEventTimeWindows的不同之处,TumblingProcessingTimeWindows不使用timestamp参数来计算,它使用now值替代;getDefaultTrigger方法返回的是ProcessingTimeTrigger,而isEventTime方法返回的为falseTumblingProcessingTimeWindows也提供了of静态工厂方法,可以指定size及offset参数小结flink的Tumbling Window分为TumblingEventTimeWindows及TumblingProcessingTimeWindows,它们都继承了WindowAssigner,其中元素类型为Object,而窗口类型为TimeWindow;它有两个参数,一个是size,一个是offset,其中offset必须大于等于0,size必须大于offsetWindowAssigner定义了assignWindows、getDefaultTrigger、getWindowSerializer、isEventTime这几个抽象方法,同时定义了抽象静态类WindowAssignerContext;它有两个泛型,其中T为元素类型,而W为窗口类型;TumblingEventTimeWindows及TumblingProcessingTimeWindows的窗口类型为TimeWindow,它有start及end属性,其中start为inclusive,而end为exclusive,maxTimestamp返回的是end-1,它还提供了mergeWindows及getWindowStartWithOffset静态方法;前者用于合并重叠的时间窗口,后者用于获取指定timestamp、offset、windowSize的window startTumblingEventTimeWindows及TumblingProcessingTimeWindows的不同在于assignWindows、getDefaultTrigger、isEventTime方法;前者assignWindows使用的是参数中的timestamp,而后者使用的是now值;前者的getDefaultTrigger返回的是EventTimeTrigger,而后者返回的是ProcessingTimeTrigger;前者isEventTime方法返回的为true,而后者返回的为falsedocTumbling Windows
要在phpmyadmin中监控数据库健康状态,首先应通过执行show global status查看关键指标如connections、slow_queries、bytes_received/sent;其次使用show processlist分析当前进程,识别sleep连接或长时间查询;接着用show…
解决phpmyadmin执行sql时的锁等待问题,需先定位锁源并针对性优化。1. 查看进程列表:通过show full processlist;识别长时间运行、状态为locked或waiting for table metadata lock等问题sql;2. 优化慢查询:使用explain分析未命…