智能推荐算法怎么实现_基于协同过滤的推荐系统构建

协同过滤通过用户或物品的互动关系预测偏好,分为基于用户和物品的两种方法,利用相似度计算进行推荐,但面临冷启动、数据稀疏性和流行度偏见等问题,需结合矩阵分解、时间因素或混合算法优化,常用准确率、召回率和NDCG等指标评估效果。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

智能推荐算法怎么实现_基于协同过滤的推荐系统构建

智能推荐算法,尤其是基于协同过滤的,本质上是通过分析用户和物品之间的互动关系,来预测用户可能喜欢什么。核心在于“协同”,即利用群体智慧来做个性化推荐。

解决方案

协同过滤主要分为两种:基于用户的协同过滤(User-Based CF)和基于物品的协同过滤(Item-Based CF)。

基于用户的协同过滤:

寻找相似用户: 计算用户之间的相似度。常用的相似度计算方法包括余弦相似度、皮尔逊相关系数等。例如,用户A和用户B都喜欢电影《泰坦尼克号》和《阿凡达》,那么他们可能就是相似用户。

import numpy as npfrom sklearn.metrics.pairwise import cosine_similaritydef user_based_cf(user_item_matrix, user_id, top_n=10):    """    基于用户的协同过滤推荐    user_item_matrix: 用户-物品矩阵,行代表用户,列代表物品    user_id: 目标用户ID    top_n: 推荐的物品数量    """    # 计算用户相似度    user_similarity = cosine_similarity(user_item_matrix)    # 找到与目标用户最相似的用户    similar_users = np.argsort(user_similarity[user_id])[::-1][1:] # 排除自己    # 目标用户未评分的物品    unrated_items = np.where(user_item_matrix[user_id] == 0)[0]    # 预测评分    predicted_scores = {}    for item_id in unrated_items:        score = 0        similarity_sum = 0        for similar_user in similar_users:            if user_item_matrix[similar_user, item_id] > 0:                score += user_similarity[user_id, similar_user] * user_item_matrix[similar_user, item_id]                similarity_sum += user_similarity[user_id, similar_user]        if similarity_sum > 0:            predicted_scores[item_id] = score / similarity_sum        else:            predicted_scores[item_id] = 0 # 如果没有相似用户评分,则预测为0    # 按照预测评分排序,推荐前N个物品    sorted_items = sorted(predicted_scores.items(), key=lambda x: x[1], reverse=True)    recommended_items = [item[0] for item in sorted_items[:top_n]]    return recommended_items# 示例user_item_matrix = np.array([    [5, 3, 0, 1, 0],    [4, 0, 0, 1, 1],    [1, 1, 0, 5, 0],    [1, 0, 0, 4, 4],    [0, 1, 5, 4, 0],])user_id = 0 # 假设要为用户0推荐recommended_items = user_based_cf(user_item_matrix, user_id)print(f"为用户 {user_id} 推荐的物品:{recommended_items}")

预测评分: 找到与目标用户最相似的N个用户,然后根据这些用户对未评分物品的评分,加权平均预测目标用户对该物品的评分。权重就是用户之间的相似度。

推荐: 选择预测评分最高的N个物品推荐给用户。

基于物品的协同过滤:

寻找相似物品: 计算物品之间的相似度。例如,如果很多用户同时购买了商品A和商品B,那么它们可能就是相似物品。

import numpy as npfrom sklearn.metrics.pairwise import cosine_similaritydef item_based_cf(user_item_matrix, item_id, top_n=10):    """    基于物品的协同过滤推荐    user_item_matrix: 用户-物品矩阵,行代表用户,列代表物品    item_id: 目标物品ID    top_n: 推荐的物品数量    """    # 计算物品相似度    item_similarity = cosine_similarity(user_item_matrix.T)    # 找到与目标物品最相似的物品    similar_items = np.argsort(item_similarity[item_id])[::-1][1:] # 排除自己    # 获取所有用户的评分数据    user_ratings = user_item_matrix    # 预测用户对其他物品的评分    predicted_scores = {}    for user_id in range(user_ratings.shape[0]):        score = 0        similarity_sum = 0        for similar_item in similar_items:            if user_ratings[user_id, similar_item] > 0:                score += item_similarity[item_id, similar_item] * user_ratings[user_id, similar_item]                similarity_sum += item_similarity[item_id, similar_item]        if similarity_sum > 0:            predicted_scores[user_id] = score / similarity_sum        else:            predicted_scores[user_id] = 0    # 找到评分最高的用户    sorted_users = sorted(predicted_scores.items(), key=lambda x: x[1], reverse=True)    # 推荐前N个用户    recommended_users = [user[0] for user in sorted_users[:top_n]]    return recommended_users# 示例user_item_matrix = np.array([    [5, 3, 0, 1, 0],    [4, 0, 0, 1, 1],    [1, 1, 0, 5, 0],    [1, 0, 0, 4, 4],    [0, 1, 5, 4, 0],])item_id = 0 # 假设要为物品0推荐recommended_users = item_based_cf(user_item_matrix, item_id)print(f"为物品 {item_id} 推荐的用户:{recommended_users}")

预测评分: 如果用户喜欢了物品A,而物品B与物品A很相似,那么预测用户也会喜欢物品B。

推荐: 选择与用户已喜欢物品最相似的N个物品推荐给用户。

如何解决冷启动问题?

冷启动问题指的是新用户或新物品缺乏历史数据,难以进行推荐。

对于新用户: 可以采用基于内容的推荐(Content-Based Filtering)或基于人口统计信息的推荐(Demographic Filtering)。例如,询问用户感兴趣的类别,或者根据用户的年龄、性别等信息进行推荐。

对于新物品: 可以利用物品的描述信息,例如标签、关键词等,找到与该物品相似的物品,然后推荐给喜欢这些相似物品的用户。也可以采取“探索与利用”策略,随机将新物品推荐给一部分用户,收集反馈后再进行个性化推荐。

如何评估推荐系统的效果?

常用的评估指标包括:

准确率(Precision): 推荐的物品中,用户真正喜欢的比例。召回率(Recall): 用户真正喜欢的物品中,有多少被推荐了。F1值: 准确率和召回率的调和平均值。NDCG(Normalized Discounted Cumulative Gain): 考虑推荐列表中物品的相关性以及位置的指标。

如何优化协同过滤算法?

矩阵分解: 将用户-物品矩阵分解为两个低维矩阵,可以减少数据稀疏性,提高推荐准确率。常用的矩阵分解方法包括SVD、ALS等。引入时间因素: 用户的兴趣会随着时间变化,因此在计算相似度时,可以考虑时间因素。结合多种推荐算法: 将协同过滤与其他推荐算法结合,例如基于内容的推荐、基于知识的推荐等,可以提高推荐效果。

协同过滤的局限性是什么?

数据稀疏性: 用户-物品矩阵通常非常稀疏,导致难以找到相似用户或物品。冷启动问题: 对于新用户和新物品,难以进行推荐。可扩展性: 当用户和物品数量非常大时,计算相似度的复杂度会很高。流行度偏见: 协同过滤容易推荐热门物品,而忽略长尾物品。

总而言之,协同过滤是一种简单而有效的推荐算法,但需要根据实际情况进行优化和改进。 理解其原理,并结合业务场景灵活运用,才能构建出优秀的推荐系统。

以上就是智能推荐算法怎么实现_基于协同过滤的推荐系统构建的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/19008.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年10月31日 23:59:20
下一篇 2025年11月1日 00:27:52

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 旋转长方形后,如何计算其相对于画布左上角的轴距?

    绘制长方形并旋转,计算旋转后轴距 在拥有 1920×1080 画布中,放置一个宽高为 200×20 的长方形,其坐标位于 (100, 100)。当以任意角度旋转长方形时,如何计算它相对于画布左上角的 x、y 轴距? 以下代码提供了一个计算旋转后长方形轴距的解决方案: const x = 200;co…

    2025年12月24日
    000
  • 旋转长方形后,如何计算它与画布左上角的xy轴距?

    旋转后长方形在画布上的xy轴距计算 在画布中添加一个长方形,并将其旋转任意角度,如何计算旋转后的长方形与画布左上角之间的xy轴距? 问题分解: 要计算旋转后长方形的xy轴距,需要考虑旋转对长方形宽高和位置的影响。首先,旋转会改变长方形的长和宽,其次,旋转会改变长方形的中心点位置。 求解方法: 计算旋…

    2025年12月24日
    000
  • 旋转长方形后如何计算其在画布上的轴距?

    旋转长方形后计算轴距 假设长方形的宽、高分别为 200 和 20,初始坐标为 (100, 100),我们将它旋转一个任意角度。根据旋转矩阵公式,旋转后的新坐标 (x’, y’) 可以通过以下公式计算: x’ = x * cos(θ) – y * sin(θ)y’ = x * …

    2025年12月24日
    000
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 如何计算旋转后长方形在画布上的轴距?

    旋转后长方形与画布轴距计算 在给定的画布中,有一个长方形,在随机旋转一定角度后,如何计算其在画布上的轴距,即距离左上角的距离? 以下提供一种计算长方形相对于画布左上角的新轴距的方法: const x = 200; // 初始 x 坐标const y = 90; // 初始 y 坐标const w =…

    2025年12月24日
    200
  • CSS元素设置em和transition后,为何载入页面无放大效果?

    css元素设置em和transition后,为何载入无放大效果 很多开发者在设置了em和transition后,却发现元素载入页面时无放大效果。本文将解答这一问题。 原问题:在视频演示中,将元素设置如下,载入页面会有放大效果。然而,在个人尝试中,并未出现该效果。这是由于macos和windows系统…

    2025年12月24日
    200
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 如何计算旋转后的长方形在画布上的 XY 轴距?

    旋转长方形后计算其画布xy轴距 在创建的画布上添加了一个长方形,并提供其宽、高和初始坐标。为了视觉化旋转效果,还提供了一些旋转特定角度后的图片。 问题是如何计算任意角度旋转后,这个长方形的xy轴距。这涉及到使用三角学来计算旋转后的坐标。 以下是一个 javascript 代码示例,用于计算旋转后长方…

    2025年12月24日
    000
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信