Java中对象的复制与浅拷贝深拷贝区别

浅拷贝复制对象时仅复制基本类型,引用类型共享同一实例,修改会影响原对象;深拷贝则递归复制所有引用对象,完全独立。实现浅拷贝需实现Cloneable接口并重写clone()方法;深拷贝可通过重写clone()方法对引用字段手动拷贝,或利用序列化机制自动实现,后者适用于复杂结构且更彻底,但性能开销较大。选择方式应根据实际需求权衡安全与效率。

java中对象的复制与浅拷贝深拷贝区别

在Java中,对象的复制并不是简单的赋值操作。当你把一个对象变量赋给另一个变量时,只是复制了对该对象的引用,而不是创建一个新的对象。如果需要真正复制对象,就需要使用拷贝机制。拷贝分为浅拷贝(Shallow Copy)深拷贝(Deep Copy),它们的核心区别在于对对象内部引用类型的处理方式不同。

浅拷贝:只复制基本类型,引用类型共享

浅拷贝会创建一个新对象,然后将原对象中的字段逐个复制到新对象中。对于基本数据类型,复制的是实际值;但对于引用类型,复制的是引用地址,也就是说新旧对象中的引用字段指向同一个对象。

这意味着:修改拷贝后对象中的引用类型成员,会影响原始对象。

实现方式:实现 Cloneable 接口 重写 Object 类的 clone() 方法

示例:

立即学习“Java免费学习笔记(深入)”;

class Address {    String city;    Address(String city) { this.city = city; }}class Person implements Cloneable {    String name;    Address addr;    Person(String name, Address addr) {        this.name = name;        this.addr = addr;    }    public Object clone() throws CloneNotSupportedException {        return super.clone();    }}

测试:

Address addr = new Address("北京");Person p1 = new Person("张三", addr);Person p2 = (Person) p1.clone();p2.addr.city = "上海";System.out.println(p1.addr.city); // 输出:上海

可以看到,p1 的地址也被修改了,因为 p1 和 p2 共享同一个 Address 对象。

深拷贝:完全独立的新对象

深拷贝不仅复制对象本身,还会递归地复制所有被引用的对象。最终的结果是:新对象与原对象完全独立,任何一方的修改都不会影响另一方。

要实现深拷贝,不能依赖默认的 clone(),必须手动对每个引用类型字段进行深度复制。

标贝科技 标贝科技

标贝科技-专业AI语音服务的人工智能开放平台

标贝科技 14 查看详情 标贝科技 实现方式:在 clone() 方法中,对引用对象也调用 clone() 使用序列化(Serializable)机制实现深拷贝 通过构造函数或工厂方法手动复制

示例(使用 clone 实现深拷贝):

class Address implements Cloneable {    String city;    Address(String city) { this.city = city; }    public Object clone() throws CloneNotSupportedException {        return super.clone();    }}class Person implements Cloneable {    String name;    Address addr;    public Object clone() throws CloneNotSupportedException {        Person cloned = (Person) super.clone();        cloned.addr = (Address) addr.clone(); // 深度复制引用对象        return cloned;    }}

此时再修改 p2.addr.city,p1 不受影响。

序列化实现深拷贝(通用方案)

对于结构复杂的对象,手动实现深拷贝容易遗漏。可以利用 Java 的序列化机制自动完成深拷贝。

要求:对象及其所有引用的对象都必须实现 Serializable 接口。

示例:

立即学习“Java免费学习笔记(深入)”;

public Object deepCopy(Object obj) throws IOException, ClassNotFoundException {    ByteArrayOutputStream bos = new ByteArrayOutputStream();    ObjectOutputStream oos = new ObjectOutputStream(bos);    oos.writeObject(obj);    ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());    ObjectInputStream ois = new ObjectInputStream(bis);    return ois.readObject();}

这种方式能确保所有层级的对象都被复制,是最彻底的深拷贝方法。

基本上就这些。关键点是:浅拷贝快但不彻底,深拷贝安全但成本高。根据实际需求选择合适的拷贝方式。

以上就是Java中对象的复制与浅拷贝深拷贝区别的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/294208.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月4日 21:51:38
下一篇 2025年11月4日 21:57:34

相关推荐

  • Go语言中切片与数组的转换:理解其类型差异与显式操作

    本教程深入探讨go语言中切片(slice)与数组(array)的根本区别,解释为何无法直接将切片作为数组参数传递。我们将阐明数组的值类型特性和切片的引用语义,并通过代码示例展示它们在函数传参时的不同行为。文章还将提供将切片内容显式复制到数组的方法,并强调go语言避免隐式转换的设计哲学,以帮助开发者更…

    2025年12月16日
    000
  • Go语言中实现透明(过滤器式)的Gzip/Gunzip流处理

    本文探讨在go语言中如何实现`gzip.writer`与`gzip.reader`之间的实时数据流连接,以达到透明的压缩与解压缩效果。针对直接使用`bytes.buffer`的常见问题,教程详细介绍了利用`io.pipe`构建同步管道,并结合go协程实现并发读写操作的关键技术,确保数据能够高效、无阻…

    2025年12月16日
    000
  • Go语言中切片与数组的类型差异与显式转换

    本文深入探讨go语言中切片与数组之间转换的机制与限制。我们将阐明切片和数组作为不同数据类型的本质差异,包括其内存表示和函数参数传递语义。通过具体代码示例,文章将解释为何不能直接将切片作为数组参数传递,并提供显式复制的解决方案,同时强调go语言设计哲学中避免隐式转换的考量,旨在帮助开发者更好地理解和使…

    2025年12月16日
    000
  • Go语言Modbus TCP客户端通信实践与常见问题解析

    本文旨在指导读者使用go语言实现可靠的modbus tcp客户端通信,重点解决在数据交互中遇到的“connection reset by peer”和响应为空的问题。文章将深入解析modbus tcp请求帧的正确构建方式,强调采用`net.conn.write`和`net.conn.read`进行底…

    2025年12月16日
    000
  • 深入理解内存映射文件:RDWR模式下的数据同步机制

    内存映射文件(mmap)是一种高效的I/O机制,它将文件或设备的一部分直接映射到进程的虚拟地址空间,允许应用程序像访问内存一样访问文件内容,从而简化文件I/O操作并提高性能。然而,对于其不同的访问模式,特别是`RDWR`(读写)模式下的数据持久化行为,开发者常有疑问。本文将深入探讨`RDWR`模式下…

    2025年12月16日
    000
  • Go语言中实现透明(过滤式)Gzip/Gunzip数据流处理

    本文探讨了在go语言中实现透明、过滤式数据流处理的有效方法,特别以`gzip`压缩/解压为例。针对直接连接`gzip.writer`和`gzip.reader`到同一`bytes.buffer`导致的并发问题和死锁,文章提出了使用`io.pipe`和go协程的解决方案。`io.pipe`提供同步的内…

    2025年12月16日
    000
  • Go语言中切片与数组的转换:理解底层差异与实践

    在go语言中,切片(slice)不能直接隐式转换为数组(array)并作为函数参数传递。这源于它们在内存表示和行为上的根本差异:数组是固定大小的值类型,传递时进行完整复制;而切片是引用类型,传递时复制其头部结构,指向同一底层数组。因此,若需将切片内容传递给期望数组的函数,必须通过显式复制操作来完成,…

    2025年12月16日
    000
  • Go语言:实现Goroutine数据定时输出与状态共享的最佳实践

    本文将深入探讨在go语言中如何优雅地实现从长时间运行的goroutine中定时获取并输出数据。我们将介绍一种通过共享受保护状态(利用sync.rwmutex保障并发安全)结合定时器机制(time.tick)的解决方案,以确保主程序能按固定间隔读取并打印goroutine的最新进展,同时避免复杂的通道…

    2025年12月16日
    000
  • 如何在Golang中实现微服务蓝绿部署_Golang微服务蓝绿部署方法汇总

    蓝绿部署通过维护两个独立环境实现零停机发布,先部署新版本并验证,再切换流量确保稳定性。1. 原理:蓝色运行旧版,绿色部署新版,健康检查通过后切流,数据库需兼容,支持快速回滚。2. K8s实现:用Deployment管理v1和v2版本,Service通过selector切换流量,结合探针与CI/CD工…

    2025年12月16日
    000
  • Go语言测试包命名策略:白盒与黑盒测试的实践指南

    本文深入探讨go语言中测试包的两种主要命名策略:与被测代码同包(`package myfunc`)和独立测试包(`package myfunc_test`)。这两种策略分别对应白盒测试和黑盒测试,影响着测试代码对非导出标识符的访问权限。文章将详细解析各策略的优缺点、适用场景,并提供实际代码示例,旨在…

    2025年12月16日
    000
  • Go语言中实现多态对象工厂模式的最佳实践

    本文探讨了在go语言中如何设计一个能够根据输入创建不同类型对象的工厂函数。针对初学者常遇到的直接返回具体类型或空接口导致编译失败的问题,文章详细阐述了通过定义并返回接口类型来解决这一挑战。这种方法利用go语言的隐式接口实现特性,有效构建出灵活且可扩展的对象工厂,从而实现多态行为。 Go语言对象工厂模…

    2025年12月16日
    000
  • Go语言测试包命名策略:深入理解白盒与黑盒测试实践

    本文深入探讨go语言中测试包的两种核心命名策略:package myfunc 和 package myfunc_test。这两种策略分别对应白盒测试和黑盒测试,决定了测试代码能否访问被测包的非导出标识符。文章将详细分析每种策略的优缺点、适用场景,并提供实践建议,帮助开发者根据测试需求做出明智选择。 …

    2025年12月16日
    000
  • 深入理解Google App Engine Go运行时特性与限制

    Google App Engine (GAE) 为开发者提供了多语言运行时环境,其中Go语言运行时具有其独特的特性和潜在限制。本文旨在指导开发者如何系统性地理解Go运行时与Java或Python等其他运行时之间的差异,特别是关于API可用性和运行时行为的考量。我们将重点阐述官方文档作为权威信息来源的…

    2025年12月16日
    000
  • 深入理解Google App Engine Go运行时限制与跨语言对比

    本文旨在探讨google app engine go运行时相对于java或python运行时可能存在的限制,主要涵盖api可用性、特性支持及运行时环境差异。我们将强调查阅官方文档的重要性,并提供识别和应对这些限制的策略,以帮助开发者更高效地在app engine上使用go语言进行开发。 Google…

    2025年12月16日
    000
  • Go语言对象工厂模式:利用接口实现多态创建不同类型对象

    本教程探讨了在go语言中如何实现一个灵活的对象工厂模式,以根据输入动态创建不同类型的对象。通过深入理解go的接口机制,我们展示了如何定义一个通用接口,并让不同的结构体类型隐式实现该接口,从而使工厂函数能够返回一个接口类型,实现多态行为,克服了go语言中没有传统继承的限制。 引言:动态对象创建的挑战 …

    2025年12月16日
    000
  • Go语言:正确地将日志写入文件

    本文详细介绍了在Go语言中如何将日志正确地写入到文件中。核心在于理解`os.Open()`和`os.OpenFile()`的区别,并使用`os.OpenFile()`配合`os.O_RDWR | os.O_CREATE | os.O_APPEND`等文件模式,确保文件能够被创建、打开并以追加模式写入…

    2025年12月16日
    000
  • Golang如何使用mutex和RWMutex优化性能

    答案:Go中Mutex适用于读写均衡,RWMutex适合读多写少场景;应优先根据读写比例选择锁类型,缩短持锁时间并避免RWMutex的写饥饿问题。 在Go语言中,mutex 和 RWMutex 是控制并发访问共享资源的核心工具。合理使用它们不仅能保证数据安全,还能显著提升程序性能。关键在于理解它们的…

    2025年12月16日
    000
  • Go 语言教程:探索闭包中的变量作用域与生命周期

    本文深入探讨 go 语言中闭包(closure)的核心概念,重点解析其如何通过词法作用域捕获外部变量,并维持这些变量的状态,即使外部函数执行完毕后仍能访问和修改。文章还将阐述 go 函数作为一等公民的特性,并通过具体代码示例,展示闭包在生成序列、迭代器等场景下的强大应用,帮助读者全面理解闭包的工作原…

    2025年12月16日
    000
  • Go语言中HTTP Cookie的正确检索与处理

    本文旨在详细阐述Go语言中HTTP Cookie的正确检索方法,并着重解决常见的变量作用域问题和健壮的错误处理策略。通过实际代码示例,我们将学习如何安全地从HTTP请求中获取Cookie,处理Cookie不存在的情况,并将其实际值传递给HTML模板,从而避免运行时错误并提升应用程序的稳定性。 在Go…

    2025年12月16日
    000
  • Go语言闭包:深入理解变量作用域与持久化

    本文深入探讨go语言中的闭包机制,重点解析其如何实现变量的持久化与作用域管理。通过实例,我们将理解闭包如何捕获并引用其外部函数的局部变量,而非仅仅复制,从而使这些变量在闭包多次调用间保持状态。文章还将涵盖命名返回值的使用及其对变量操作的影响,旨在帮助开发者掌握go闭包的核心原理与应用。 在Go语言中…

    2025年12月16日
    000

发表回复

登录后才能评论
关注微信