使用Lora技术进行Dreambooth训练【抢先体验版】

本文介绍了使用PaddleNLP等工具进行模型训练与推理的流程。先安装paddlenlp等依赖,再分别用dreambooth lora和文生图lora方式训练,设置参数并保存权重。之后可启动visualdl查看训练出图,最后加载训练好的文件,通过相关代码进行推理生成图像。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

使用lora技术进行dreambooth训练【抢先体验版】 - 创想鸟

1. 安装依赖

运行下面的按钮安装依赖,为了确保安装成功,安装完毕请重启内核!(注意:这里只需要运行一次!)In [1]

!pip install -U paddlenlp ppdiffusers safetensors --user

       

Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simpleRequirement already satisfied: paddlenlp in ./.data/webide/pip/lib/python3.7/site-packages (2.5.1)Requirement already satisfied: ppdiffusers in ./.data/webide/pip/lib/python3.7/site-packages (0.11.0)Requirement already satisfied: safetensors in ./.data/webide/pip/lib/python3.7/site-packages (0.2.8)Requirement already satisfied: paddlefsl in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (1.1.0)Requirement already satisfied: sentencepiece in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (0.1.96)Requirement already satisfied: huggingface-hub>=0.11.1 in ./.data/webide/pip/lib/python3.7/site-packages (from paddlenlp) (0.12.0)Requirement already satisfied: seqeval in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (1.2.2)Requirement already satisfied: fastapi in ./.data/webide/pip/lib/python3.7/site-packages (from paddlenlp) (0.91.0)Requirement already satisfied: typer in ./.data/webide/pip/lib/python3.7/site-packages (from paddlenlp) (0.7.0)Requirement already satisfied: multiprocess<=0.70.12.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (0.70.11.1)Requirement already satisfied: jieba in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (0.42.1)Requirement already satisfied: Flask-Babel=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (2.7.0)Requirement already satisfied: paddle2onnx in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (1.0.0)Requirement already satisfied: colorama in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (0.4.4)Requirement already satisfied: visualdl in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (2.4.0)Requirement already satisfied: uvicorn in ./.data/webide/pip/lib/python3.7/site-packages (from paddlenlp) (0.20.0)Requirement already satisfied: tqdm in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (4.64.1)Requirement already satisfied: dill=5.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from datasets>=2.0.0->paddlenlp) (5.1.2)Requirement already satisfied: numpy>=1.17 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from datasets>=2.0.0->paddlenlp) (1.19.5)Requirement already satisfied: pyarrow>=6.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from datasets>=2.0.0->paddlenlp) (10.0.0)Requirement already satisfied: fsspec[http]>=2021.11.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from datasets>=2.0.0->paddlenlp) (2022.11.0)Requirement already satisfied: requests>=2.19.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from datasets>=2.0.0->paddlenlp) (2.24.0)Requirement already satisfied: xxhash in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from datasets>=2.0.0->paddlenlp) (3.1.0)Requirement already satisfied: importlib-metadata in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from datasets>=2.0.0->paddlenlp) (4.2.0)Requirement already satisfied: packaging in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from datasets>=2.0.0->paddlenlp) (21.3)Requirement already satisfied: aiohttp in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from datasets>=2.0.0->paddlenlp) (3.8.3)Requirement already satisfied: responses=2.0.0->paddlenlp) (0.18.0)Requirement already satisfied: pandas in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from datasets>=2.0.0->paddlenlp) (1.1.5)Requirement already satisfied: Jinja2>=2.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Flask-Babelpaddlenlp) (3.0.0)Requirement already satisfied: pytz in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Flask-Babelpaddlenlp) (2019.3)Requirement already satisfied: Babel>=2.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Flask-Babelpaddlenlp) (2.8.0)Requirement already satisfied: Flask in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Flask-Babelpaddlenlp) (1.1.1)Requirement already satisfied: filelock in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from huggingface-hub>=0.11.1->paddlenlp) (3.0.12)Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from huggingface-hub>=0.11.1->paddlenlp) (4.3.0)Requirement already satisfied: starlette=0.24.0 in ./.data/webide/pip/lib/python3.7/site-packages (from fastapi->paddlenlp) (0.24.0)Requirement already satisfied: pydantic!=1.7,!=1.7.1,!=1.7.2,!=1.7.3,!=1.8,!=1.8.1,=1.6.2 in ./.data/webide/pip/lib/python3.7/site-packages (from fastapi->paddlenlp) (1.10.4)Requirement already satisfied: wcwidth>=0.2.5 in ./.data/webide/pip/lib/python3.7/site-packages (from ftfy->ppdiffusers) (0.2.6)Requirement already satisfied: pygments=2.6.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from rich->paddlenlp) (2.13.0)Requirement already satisfied: commonmark=0.9.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from rich->paddlenlp) (0.9.1)Requirement already satisfied: scikit-learn>=0.21.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from seqeval->paddlenlp) (0.24.2)Requirement already satisfied: click=7.1.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from typer->paddlenlp) (8.0.4)Requirement already satisfied: h21>=0.8 in ./.data/webide/pip/lib/python3.7/site-packages (from uvicorn->paddlenlp) (0.14.0)Requirement already satisfied: matplotlib in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl->paddlenlp) (2.2.3)Requirement already satisfied: six>=1.14.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl->paddlenlp) (1.16.0)Requirement already satisfied: protobuf>=3.11.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl->paddlenlp) (3.20.0)Requirement already satisfied: bce-python-sdk in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl->paddlenlp) (0.8.53)Requirement already satisfied: Werkzeug>=0.15 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Flask->Flask-Babelpaddlenlp) (0.16.0)Requirement already satisfied: itsdangerous>=0.24 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Flask->Flask-Babelpaddlenlp) (1.1.0)Requirement already satisfied: attrs>=17.3.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from aiohttp->datasets>=2.0.0->paddlenlp) (22.1.0)Requirement already satisfied: aiosignal>=1.1.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from aiohttp->datasets>=2.0.0->paddlenlp) (1.2.0)Requirement already satisfied: multidict=4.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from aiohttp->datasets>=2.0.0->paddlenlp) (6.0.2)Requirement already satisfied: async-timeout=4.0.0a3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from aiohttp->datasets>=2.0.0->paddlenlp) (4.0.2)Requirement already satisfied: asynctest==0.13.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from aiohttp->datasets>=2.0.0->paddlenlp) (0.13.0)Requirement already satisfied: frozenlist>=1.1.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from aiohttp->datasets>=2.0.0->paddlenlp) (1.3.0)Requirement already satisfied: yarl=1.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from aiohttp->datasets>=2.0.0->paddlenlp) (1.7.2)Requirement already satisfied: charset-normalizer=2.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from aiohttp->datasets>=2.0.0->paddlenlp) (2.1.1)Requirement already satisfied: MarkupSafe>=2.0.0rc2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Jinja2>=2.5->Flask-Babelpaddlenlp) (2.0.1)Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from packaging->datasets>=2.0.0->paddlenlp) (3.0.9)Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests>=2.19.0->datasets>=2.0.0->paddlenlp) (2019.9.11)Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,=1.21.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests>=2.19.0->datasets>=2.0.0->paddlenlp) (1.25.11)Requirement already satisfied: chardet=3.0.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests>=2.19.0->datasets>=2.0.0->paddlenlp) (3.0.4)Requirement already satisfied: idna=2.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests>=2.19.0->datasets>=2.0.0->paddlenlp) (2.8)Requirement already satisfied: scipy>=0.19.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn>=0.21.3->seqeval->paddlenlp) (1.6.3)Requirement already satisfied: joblib>=0.11 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn>=0.21.3->seqeval->paddlenlp) (0.14.1)Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn>=0.21.3->seqeval->paddlenlp) (2.1.0)Requirement already satisfied: anyio=3.4.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from starlette=0.24.0->fastapi->paddlenlp) (3.6.1)Requirement already satisfied: future>=0.6.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from bce-python-sdk->visualdl->paddlenlp) (0.18.0)Requirement already satisfied: pycryptodome>=3.8.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from bce-python-sdk->visualdl->paddlenlp) (3.9.9)Requirement already satisfied: zipp>=0.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from importlib-metadata->datasets>=2.0.0->paddlenlp) (3.8.1)Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl->paddlenlp) (1.1.0)Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl->paddlenlp) (2.8.2)Requirement already satisfied: cycler>=0.10 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl->paddlenlp) (0.10.0)Requirement already satisfied: sniffio>=1.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from anyio=3.4.0->starlette=0.24.0->fastapi->paddlenlp) (1.3.0)Requirement already satisfied: setuptools in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib->visualdl->paddlenlp) (56.2.0)[notice] A new release of pip available: 22.1.2 -> 23.0.1[notice] To update, run: pip install --upgrade pip

       

2. 准备要训练的图片

在这里我们已经在dogs文件夹准备好了如下所示的5张图片。使用Lora技术进行Dreambooth训练【抢先体验版】 - 创想鸟            

3. 开始训练

参数解释:

pretrained_model_name_or_path :想要训练的模型名称,例如:”runwayml/stable-diffusion-v1-5″,更多模型可参考 paddlenlp 文档instance_data_dir:想要训练的图片地址。instance_prompt:训练的prompt文本。resolution:训练时图像的大小,建议为512。train_batch_size:训练时候使用的batch_size,可不修改。gradient_accumulation_steps:梯度累积的步数,可不修改。checkpointing_steps:每隔多少步保存模型。learning_rate:训练使用的学习率。report_to:我们将训练过程中出的图片导出到visudl工具中。lr_scheduler:学习率衰减策略,可以是:”linear”, “constant”, “cosine”,”cosine_with_restarts”等。lr_warmup_steps:学习率衰减前,warmup到最大学习率所需要的步数。max_train_steps:最多训练多少步。validation_prompt:训练的过程中我们会评估训练的怎么样,因此我们需要设置评估使用的prompt文本。validation_epochs:每隔多少个epoch评估模型,我们可以查看训练的进度条,知道当前到了第几个epoch。validation_guidance_scale:评估过程中的CFG引导值,默认为5.0.seed:随机种子,设置后可以复现训练结果。lora_rank:lora 的 rank值,默认为128,与开源的版本保持一致。use_lion:表示是否使用lion优化器,如果我们不想使用lion的话需要把 –use_lion True 表示使用 –use_lion False 表示不使用。lora_weight_or_path:我们需要加载的lora权重,当前支持:pt,ckpt,safetensors,和pdparams这些格式,可直接加载这里的lora权重 https://civitai.com/models。

注意:

会保存2种格式的权重,一个是paddle的,一个是safetensors的,可以使用 https://github.com/bmaltais/kohya_ss 这个人的加载。

dreambooth lora

In [6]

!python train_dreambooth_lora.py   --pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5"    --instance_data_dir="./dogs"   --output_dir="./dream_booth_lora_outputs"   --instance_prompt="a photo of sks dog"   --resolution=512   --train_batch_size=1   --gradient_accumulation_steps=1   --checkpointing_steps=100   --learning_rate=1e-4   --report_to="visualdl"   --lr_scheduler="constant"   --lr_warmup_steps=0   --max_train_steps=500   --lora_rank=128   --validation_prompt="A photo of sks dog in a bucket"   --validation_epochs=25   --validation_guidance_scale=5.0   --use_lion False   --seed=0

       

[2023-02-23 10:13:09,015] [ WARNING] - You are using a model of type clip_text_model to instantiate a model of type . This is not supported for all configurations of models and can yield errors.W0223 10:13:09.018703 11490 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 11.2W0223 10:13:09.022612 11490 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2.Train Steps:  20%|███████████████████████▌                                                                                              | 100/500 [01:12<03:04,  2.16it/s, epoch=0019, step_loss=0.0413]Saved lora weights to ./dream_booth_lora_outputs/checkpoint-100Train Steps:  40%|███████████████████████████████████████████████▌                                                                       | 200/500 [02:25<02:19,  2.15it/s, epoch=0039, step_loss=0.446]Saved lora weights to ./dream_booth_lora_outputs/checkpoint-200Train Steps:  60%|██████████████████████████████████████████████████████████████████████▏                                              | 300/500 [03:37<01:33,  2.13it/s, epoch=0059, step_loss=0.00273]Saved lora weights to ./dream_booth_lora_outputs/checkpoint-300Train Steps:  80%|███████████████████████████████████████████████████████████████████████████████████████████████▏                       | 400/500 [04:53<00:47,  2.11it/s, epoch=0079, step_loss=0.275]Saved lora weights to ./dream_booth_lora_outputs/checkpoint-400Train Steps: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 500/500 [05:44<00:00,  2.14it/s, epoch=0099, step_loss=0.00985]Saved lora weights to ./dream_booth_lora_outputs/checkpoint-500Saved final lora weights to ./dream_booth_lora_outputsTrain Steps: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 500/500 [05:48<00:00,  1.43it/s, epoch=0099, step_loss=0.00985]

       

文生图 lora

–train_data_dir 这个需要放图文对的文件夹,里面是图片和txt。

Gnomic智能体平台 Gnomic智能体平台

国内首家无需魔法免费无限制使用的ChatGPT4.0,网站内设置了大量智能体供大家免费使用,还有五款语言大模型供大家免费使用~

Gnomic智能体平台 47 查看详情 Gnomic智能体平台

–image_format 表示 train_data_dir 文件夹内的图片格式,比如png,jpg,jpeg

–use_lion Fasle 表示不使用lion优化器。

In [3]

!python train_text_to_image_lora.py   --pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5"    --output_dir="./text_to_image_lora_outputs3"   --train_data_dir="mishanwu"   --image_format="png"   --resolution=512   --train_batch_size=1   --gradient_accumulation_steps=1   --checkpointing_steps=500   --learning_rate=6e-5   --report_to="visualdl"   --lr_scheduler="cosine_with_restarts"   --lr_warmup_steps=0   --max_train_steps=1000   --lora_rank=128   --validation_prompt="1girl, solo, black_background, looking_at_viewer, parted_lips, tears, brown_eyes"   --validation_epochs=1   --validation_guidance_scale=5.0   --use_lion False   --seed=0

       

[2023-02-23 11:11:34,386] [ WARNING] - You are using a model of type clip_text_model to instantiate a model of type . This is not supported for all configurations of models and can yield errors.W0223 11:11:34.389356  7327 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 11.2W0223 11:11:34.392953  7327 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2.Resolving data files: 100%|████████████████| 581/581 [00:00<00:00, 50722.06it/s]Using custom data configuration default-4fb24e511b7f6118Downloading and preparing dataset imagefolder/default to /home/aistudio/.cache/huggingface/datasets/imagefolder/default-4fb24e511b7f6118/0.0.0/37fbb85cc714a338bea574ac6c7d0b5be5aff46c1862c1989b20e0771199e93f...Downloading data files #0:   0%|                        | 0/19 [00:00<?, ?obj/s]Downloading data files #3:   0%|                        | 0/18 [00:00<?, ?obj/s]Downloading data files #1:   0%|                        | 0/19 [00:00<?, ?obj/s]Downloading data files #7:   0%|                        | 0/18 [00:00<?, ?obj/s]Downloading data files #6:   0%|                        | 0/18 [00:00<?, ?obj/s]Downloading data files #4:   0%|                        | 0/18 [00:00<?, ?obj/s]Downloading data files #0: 100%|█████████████| 19/19 [00:00<00:00, 3045.97obj/s]Downloading data files #3: 100%|█████████████| 18/18 [00:00<00:00, 2919.24obj/s]Downloading data files #10:   0%|                       | 0/18 [00:00<?, ?obj/s]Downloading data files #11:   0%|                       | 0/18 [00:00<?, ?obj/s]Downloading data files #1: 100%|█████████████| 19/19 [00:00<00:00, 2589.92obj/s]Downloading data files #4: 100%|█████████████| 18/18 [00:00<00:00, 4414.54obj/s]Downloading data files #7: 100%|█████████████| 18/18 [00:00<00:00, 2468.45obj/s]Downloading data files #6: 100%|█████████████| 18/18 [00:00<00:00, 2742.57obj/s]Downloading data files #2: 100%|█████████████| 19/19 [00:00<00:00, 3250.74obj/s]Downloading data files #12:   0%|                       | 0/18 [00:00<?, ?obj/s]Downloading data files #13:   0%|                       | 0/18 [00:00<?, ?obj/s]Downloading data files #8:   0%|                        | 0/18 [00:00<?, ?obj/s]Downloading data files #10: 100%|████████████| 18/18 [00:00<00:00, 2681.49obj/s]Downloading data files #11: 100%|████████████| 18/18 [00:00<00:00, 2829.21obj/s]Downloading data files #15: 100%|████████████| 18/18 [00:00<00:00, 5331.37obj/s]Downloading data files #5: 100%|█████████████| 18/18 [00:00<00:00, 2877.96obj/s]Downloading data files #13: 100%|████████████| 18/18 [00:00<00:00, 7175.88obj/s]Downloading data files #14: 100%|████████████| 18/18 [00:00<00:00, 9971.93obj/s]Downloading data files #8: 100%|█████████████| 18/18 [00:00<00:00, 6747.47obj/s]Downloading data files #12: 100%|████████████| 18/18 [00:00<00:00, 4458.07obj/s]Downloading data files #9: 100%|█████████████| 18/18 [00:00<00:00, 2966.27obj/s]Downloading data files #2:   0%|                        | 0/18 [00:00<?, ?obj/s]Downloading data files #3:   0%|                        | 0/18 [00:00<?, ?obj/s]Downloading data files #2: 100%|█████████████| 18/18 [00:00<00:00, 8158.36obj/s]Downloading data files #0:   0%|                        | 0/19 [00:00<?, ?obj/s]Downloading data files #4: 100%|█████████████| 18/18 [00:00<00:00, 7530.17obj/s]Downloading data files #3: 100%|█████████████| 18/18 [00:00<00:00, 5302.16obj/s]Downloading data files #0: 100%|█████████████| 19/19 [00:00<00:00, 8757.34obj/s]Downloading data files #8:   0%|                        | 0/18 [00:00<?, ?obj/s]Downloading data files #9:   0%|                        | 0/18 [00:00<?, ?obj/s]Downloading data files #7:   0%|                        | 0/18 [00:00<?, ?obj/s]Downloading data files #1:   0%|                        | 0/19 [00:00<?, ?obj/s]Downloading data files #5: 100%|█████████████| 18/18 [00:00<00:00, 4015.18obj/s]Downloading data files #6:   0%|                        | 0/18 [00:00<?, ?obj/s]Downloading data files #8: 100%|█████████████| 18/18 [00:00<00:00, 4227.42obj/s]Downloading data files #7: 100%|█████████████| 18/18 [00:00<00:00, 4900.21obj/s]Downloading data files #6: 100%|█████████████| 18/18 [00:00<00:00, 9804.87obj/s]Downloading data files #11: 100%|████████████| 18/18 [00:00<00:00, 4705.36obj/s]Downloading data files #9: 100%|█████████████| 18/18 [00:00<00:00, 3152.95obj/s]Downloading data files #10: 100%|████████████| 18/18 [00:00<00:00, 6718.65obj/s]Downloading data files #1: 100%|█████████████| 19/19 [00:00<00:00, 3689.60obj/s]Downloading data files #15:   0%|                       | 0/18 [00:00<?, ?obj/s]Downloading data files #13:   0%|                       | 0/18 [00:00<?, ?obj/s]Downloading data files #12: 100%|████████████| 18/18 [00:00<00:00, 6109.20obj/s]Downloading data files #15: 100%|███████████| 18/18 [00:00<00:00, 11363.26obj/s]Downloading data files #13: 100%|███████████| 18/18 [00:00<00:00, 13148.29obj/s]Downloading data files #14: 100%|███████████| 18/18 [00:00<00:00, 16183.81obj/s]Extracting data files #0:   0%|                         | 0/19 [00:00<?, ?obj/s]Extracting data files #3:   0%|                         | 0/18 [00:00<?, ?obj/s]Extracting data files #2:   0%|                         | 0/18 [00:00<?, ?obj/s]Extracting data files #1:   0%|                         | 0/19 [00:00<?, ?obj/s]Extracting data files #7:   0%|                         | 0/18 [00:00<?, ?obj/s]Extracting data files #9:   0%|                         | 0/18 [00:00<?, ?obj/s]Extracting data files #5:   0%|                         | 0/18 [00:00<?, ?obj/s]Extracting data files #6:   0%|                         | 0/18 [00:00<?, ?obj/s]Extracting data files #10:   0%|                        | 0/18 [00:00<?, ?obj/s]Extracting data files #8:   0%|                         | 0/18 [00:00<?, ?obj/s]Extracting data files #4:   0%|                         | 0/18 [00:00<?, ?obj/s]Extracting data files #11:   0%|                        | 0/18 [00:00<?, ?obj/s]Extracting data files #12:   0%|                        | 0/18 [00:00<?, ?obj/s]Extracting data files #13:   0%|                        | 0/18 [00:00<?, ?obj/s]Extracting data files #15:   0%|                        | 0/18 [00:00<?, ?obj/s]Extracting data files #3: 100%|██████████████| 18/18 [00:00<00:00, 1565.14obj/s]Extracting data files #0: 100%|██████████████| 19/19 [00:00<00:00, 1405.75obj/s]Extracting data files #2: 100%|██████████████| 18/18 [00:00<00:00, 1560.64obj/s]Extracting data files #1: 100%|██████████████| 19/19 [00:00<00:00, 1753.47obj/s]Extracting data files #7: 100%|██████████████| 18/18 [00:00<00:00, 1907.66obj/s]Extracting data files #9: 100%|██████████████| 18/18 [00:00<00:00, 1972.81obj/s]Extracting data files #5: 100%|██████████████| 18/18 [00:00<00:00, 2031.58obj/s]Extracting data files #6: 100%|██████████████| 18/18 [00:00<00:00, 2102.00obj/s]Extracting data files #8: 100%|██████████████| 18/18 [00:00<00:00, 2238.62obj/s]Extracting data files #12: 100%|█████████████| 18/18 [00:00<00:00, 2500.58obj/s]Extracting data files #10: 100%|█████████████| 18/18 [00:00<00:00, 1698.37obj/s]Extracting data files #13: 100%|█████████████| 18/18 [00:00<00:00, 2295.87obj/s]Extracting data files #4: 100%|██████████████| 18/18 [00:00<00:00, 1713.79obj/s]Extracting data files #11: 100%|█████████████| 18/18 [00:00<00:00, 1759.56obj/s]Extracting data files #15: 100%|█████████████| 18/18 [00:00<00:00, 2079.59obj/s]Extracting data files #14: 100%|█████████████| 18/18 [00:00<00:00, 1828.07obj/s]Dataset imagefolder downloaded and prepared to /home/aistudio/.cache/huggingface/datasets/imagefolder/default-4fb24e511b7f6118/0.0.0/37fbb85cc714a338bea574ac6c7d0b5be5aff46c1862c1989b20e0771199e93f. Subsequent calls will reuse this data.100%|████████████████████████████████████████████| 1/1 [00:00<00:00, 256.14it/s]Train Steps:  29%|▎| 290/1000 [02:14<05:22,  2.20it/s, epoch=0000, step_loss=0.1You have disabled the safety checker for  by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .Train Steps:  50%|▌| 500/1000 [04:16<03:54,  2.13it/s, epoch=0001, step_loss=0.0Saved lora weights to ./text_to_image_lora_outputs3/checkpoint-500Train Steps:  58%|▌| 580/1000 [04:55<03:09,  2.22it/s, epoch=0001, step_loss=0.2You have disabled the safety checker for  by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .Train Steps:  87%|▊| 870/1000 [07:40<00:58,  2.22it/s, epoch=0002, step_loss=0.0You have disabled the safety checker for  by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .Train Steps: 100%|█| 1000/1000 [09:10<00:00,  1.25it/s, epoch=0003, step_loss=0.Saved lora weights to ./text_to_image_lora_outputs3/checkpoint-1000You have disabled the safety checker for  by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .Saved final lora weights to ./text_to_image_lora_outputs3Train Steps: 100%|█| 1000/1000 [09:44<00:00,  1.71it/s, epoch=0003, step_loss=0.

       

4. 启动visualdl程序,查看我们训练过程中出图情况

使用Lora技术进行Dreambooth训练【抢先体验版】 - 创想鸟使用Lora技术进行Dreambooth训练【抢先体验版】 - 创想鸟        

5. 加载训练好的文件进行推理

In [1]

import lora_helperfrom allinone import StableDiffusionPipelineAllinOnefrom ppdiffusers import DPMSolverMultistepSchedulerimport paddle# 基础模型,需要是paddle版本的权重,未来会加更多的权重pretrained_model_name_or_path = "runwayml/stable-diffusion-v1-5"# 我们加载safetensor版本的权重lora_outputs_path = "9070.safetensors"# 加载之前的模型pipe = StableDiffusionPipelineAllinOne.from_pretrained(pretrained_model_name_or_path, safety_checker=None)pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)# 加载lora权重from IPython.display import clear_output, displayclear_output()pipe.apply_lora(lora_outputs_path)

       

|---------------当前的rank是 128!|---------------当前的alpha是 128.0!Loading lora_weights successfully!

       In [5]

import lora_helperfrom allinone import StableDiffusionPipelineAllinOnefrom ppdiffusers import DPMSolverMultistepSchedulerprompt               = "A photo of sks dog in a bucket"negative_prompt      = ""guidance_scale       = 8num_inference_steps  = 25height               = 512width                = 512img = pipe(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, height=height, width=width, num_inference_steps=num_inference_steps).images[0]display(img)display(img.argument)

       

  0%|          | 0/25 [00:00<?, ?it/s]

               


               

{'prompt': 'A photo of sks dog in a bucket', 'negative_prompt': '', 'height': 512, 'width': 512, 'num_inference_steps': 25, 'guidance_scale': 8, 'num_images_per_prompt': 1, 'eta': 0.0, 'seed': 3574959348, 'latents': None, 'max_embeddings_multiples': 1, 'no_boseos_middle': False, 'skip_parsing': False, 'skip_weighting': False, 'epoch_time': 1676862593.5281246}

               

以上就是使用Lora技术进行Dreambooth训练【抢先体验版】的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/316914.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月5日 08:07:40
下一篇 2025年11月5日 08:09:14

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 旋转长方形后,如何计算其相对于画布左上角的轴距?

    绘制长方形并旋转,计算旋转后轴距 在拥有 1920×1080 画布中,放置一个宽高为 200×20 的长方形,其坐标位于 (100, 100)。当以任意角度旋转长方形时,如何计算它相对于画布左上角的 x、y 轴距? 以下代码提供了一个计算旋转后长方形轴距的解决方案: const x = 200;co…

    2025年12月24日
    000
  • 旋转长方形后,如何计算它与画布左上角的xy轴距?

    旋转后长方形在画布上的xy轴距计算 在画布中添加一个长方形,并将其旋转任意角度,如何计算旋转后的长方形与画布左上角之间的xy轴距? 问题分解: 要计算旋转后长方形的xy轴距,需要考虑旋转对长方形宽高和位置的影响。首先,旋转会改变长方形的长和宽,其次,旋转会改变长方形的中心点位置。 求解方法: 计算旋…

    2025年12月24日
    000
  • 旋转长方形后如何计算其在画布上的轴距?

    旋转长方形后计算轴距 假设长方形的宽、高分别为 200 和 20,初始坐标为 (100, 100),我们将它旋转一个任意角度。根据旋转矩阵公式,旋转后的新坐标 (x’, y’) 可以通过以下公式计算: x’ = x * cos(θ) – y * sin(θ)y’ = x * …

    2025年12月24日
    000
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 如何计算旋转后长方形在画布上的轴距?

    旋转后长方形与画布轴距计算 在给定的画布中,有一个长方形,在随机旋转一定角度后,如何计算其在画布上的轴距,即距离左上角的距离? 以下提供一种计算长方形相对于画布左上角的新轴距的方法: const x = 200; // 初始 x 坐标const y = 90; // 初始 y 坐标const w =…

    2025年12月24日
    200
  • CSS元素设置em和transition后,为何载入页面无放大效果?

    css元素设置em和transition后,为何载入无放大效果 很多开发者在设置了em和transition后,却发现元素载入页面时无放大效果。本文将解答这一问题。 原问题:在视频演示中,将元素设置如下,载入页面会有放大效果。然而,在个人尝试中,并未出现该效果。这是由于macos和windows系统…

    2025年12月24日
    200
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 如何计算旋转后的长方形在画布上的 XY 轴距?

    旋转长方形后计算其画布xy轴距 在创建的画布上添加了一个长方形,并提供其宽、高和初始坐标。为了视觉化旋转效果,还提供了一些旋转特定角度后的图片。 问题是如何计算任意角度旋转后,这个长方形的xy轴距。这涉及到使用三角学来计算旋转后的坐标。 以下是一个 javascript 代码示例,用于计算旋转后长方…

    2025年12月24日
    000
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信