【情人节特辑】:虚拟女友教你如何正确“回答”

该项目旨在通过技术手段将“直男话术”转化为高情商表达,以增进情侣感情。其核心是让虚拟女友纠正不当话语,具体步骤如下:首先,输入直男语句(如“多喝热水”)转换为对应编号的高情商表达;接着用Pixel2Pixel模型将卡通照片真人化;再将真人化照片输入PaddleBoBo生成女友动画;最后让虚拟女友纠正话语。项目需32GB以上显卡环境,依赖相关模型和工具实现。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【情人节特辑】:虚拟女友教你如何正确“回答” - 创想鸟

虚拟女友纠正话语器

情侣之间相处少不了摩擦,但是据发现很多不必要的吵架,往往是词不达意造成的。比如关心她的身体健康,要注意身体,往往就只说了句“多喝热水”。如果换成另外一种表达,会让对方更容易接受,也更容易接收你给的爱意。因此“会说话”就变得十分重要了。这个项目就给大家一个初步的示范,怎么样的高情商的回答会让这段感情升温。

主要内容借鉴了我之前的项目:打造一个专属自己的卡通真人化主播

例如输入这张照片以及直男话术,你觉得会呈现出什么效果的视频呢?(doge)

【情人节特辑】:虚拟女友教你如何正确“回答” - 创想鸟

直男语句:多喝热水。

效果展示

整体实现:

1.输入直男话语切换成高情商语句

2.利用Pixel2Pixel模型实现卡通照片真人化

3.把真人化输出的照片输入进PaddleBoBo生成女友动画

4.让虚拟女友纠正你的话语

PS:执行此项目请使用32GB显卡以上环境(看PaddleBoBo作者项目有提到,用16GB会爆内存导致跑不通,且本次项目也是在32GB显卡环境上制作的)

第一步、输入直男话语切换成高情商语句

请记住生成的编号等等用得着

阿里云-虚拟数字人 阿里云-虚拟数字人

阿里云-虚拟数字人是什么? …

阿里云-虚拟数字人 2 查看详情 阿里云-虚拟数字人 In [ ]

huashu_dict={'多喝热水':'a',            '你怎么又生气了':'b',            '你又怎么了':'c',            '你要这样想我也没办法':'d',            '随便你!你定吧':'e',            '哦':'f'}#请输入上面指定语句(粗糙版,请大家多多包涵)a = input('请输入直男语句:'+'n')if a in huashu_dict:    print('已生成合适的话术'+'n'+'请记住生成编号'+':'+huashu_dict.get(a))else:    print('不好意思,这句话我还没学会呢。')
请输入直男语句:已生成合适的话术请记住生成编号:a

第二步、利用Pixel2Pixel模型实现卡通照片真人化

主要是修改 image_name=’01503.png’,改成自己心仪的动漫照片(最好使用逆向思维:卡通照片真人化项目里面数据集的照片文件,其他动漫照片生成效果不好看,我不负责的哈)

In [ ]

import paddleimport paddle.nn as nnfrom paddle.io import Dataset, DataLoaderimport osimport cv2import numpy as npfrom tqdm import tqdmimport matplotlib.pyplot as pltimport PIL.Image as Image%matplotlib inlineclass UnetGenerator(nn.Layer):    def __init__(self, input_nc=3, output_nc=3, ngf=64):        super(UnetGenerator, self).__init__()        self.down1 = nn.Conv2D(input_nc, ngf, kernel_size=4, stride=2, padding=1)        self.down2 = Downsample(ngf, ngf*2)        self.down3 = Downsample(ngf*2, ngf*4)        self.down4 = Downsample(ngf*4, ngf*8)        self.down5 = Downsample(ngf*8, ngf*8)        self.down6 = Downsample(ngf*8, ngf*8)        self.down7 = Downsample(ngf*8, ngf*8)        self.center = Downsample(ngf*8, ngf*8)        self.up7 = Upsample(ngf*8, ngf*8, use_dropout=True)        self.up6 = Upsample(ngf*8*2, ngf*8, use_dropout=True)        self.up5 = Upsample(ngf*8*2, ngf*8, use_dropout=True)        self.up4 = Upsample(ngf*8*2, ngf*8)        self.up3 = Upsample(ngf*8*2, ngf*4)        self.up2 = Upsample(ngf*4*2, ngf*2)        self.up1 = Upsample(ngf*2*2, ngf)        self.output_block = nn.Sequential(            nn.ReLU(),            nn.Conv2DTranspose(ngf*2, output_nc, kernel_size=4, stride=2, padding=1),            nn.Tanh()        )    def forward(self, x):        d1 = self.down1(x)        d2 = self.down2(d1)        d3 = self.down3(d2)        d4 = self.down4(d3)        d5 = self.down5(d4)        d6 = self.down6(d5)        d7 = self.down7(d6)                c = self.center(d7)                x = self.up7(c, d7)        x = self.up6(x, d6)        x = self.up5(x, d5)        x = self.up4(x, d4)        x = self.up3(x, d3)        x = self.up2(x, d2)        x = self.up1(x, d1)        x = self.output_block(x)        return xclass Downsample(nn.Layer):    # LeakyReLU => conv => batch norm    def __init__(self, in_dim, out_dim, kernel_size=4, stride=2, padding=1):        super(Downsample, self).__init__()        self.layers = nn.Sequential(            nn.LeakyReLU(0.2),            nn.Conv2D(in_dim, out_dim, kernel_size, stride, padding, bias_attr=False),            nn.BatchNorm2D(out_dim)        )    def forward(self, x):        x = self.layers(x)        return xclass Upsample(nn.Layer):    # ReLU => deconv => batch norm => dropout    def __init__(self, in_dim, out_dim, kernel_size=4, stride=2, padding=1, use_dropout=False):        super(Upsample, self).__init__()        sequence = [            nn.ReLU(),            nn.Conv2DTranspose(in_dim, out_dim, kernel_size, stride, padding, bias_attr=False),            nn.BatchNorm2D(out_dim)        ]        if use_dropout:            sequence.append(nn.Dropout(p=0.5))        self.layers = nn.Sequential(*sequence)    def forward(self, x, skip):        x = self.layers(x)        x = paddle.concat([x, skip], axis=1)        return x#实例化生成器generator = UnetGenerator()#加载权重last_weights_path = 'data/data148534/epoch100.pdparams'print('加载权重:', last_weights_path)model_state_dict = paddle.load(last_weights_path)generator.load_dict(model_state_dict)generator.eval()#读取数据image_name='01503.png'img_A2B = cv2.imread('work/'+image_name)img_A = img_A2B[:, 256:]                                  # 卡通图(即输入)img_B = img_A2B[:, :256]                                  # 真人图(即预测结果)g_input = img_A.astype('float32') / 127.5 - 1             # 归一化g_input = g_input[np.newaxis, ...].transpose(0, 3, 1, 2)  # NHWC -> NCHWg_input = paddle.to_tensor(g_input)                       # numpy -> tensorg_output = generator(g_input)g_output = g_output.detach().numpy()                      # tensor -> numpyg_output = g_output.transpose(0, 2, 3, 1)[0]              # NCHW -> NHWCg_output = g_output * 127.5 + 127.5                       # 反归一化g_output = g_output.astype(np.uint8)#只保存生成真人图像img = np.asarray(g_output).copy()img = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))# cv2 to Imageimg.save('work/'+'output_'+image_name)img_show = np.hstack([img_A, g_output])[:,:,::-1]plt.figure(figsize=(8, 8))plt.imshow(img_show)plt.show()
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/__init__.py:107: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working  from collections import MutableMapping/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/rcsetup.py:20: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working  from collections import Iterable, Mapping/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/colors.py:53: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working  from collections import SizedW0728 22:24:44.614435   192 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1W0728 22:24:44.619457   192 gpu_resources.cc:91] device: 0, cuDNN Version: 7.6.
加载权重: data/data148534/epoch100.pdparams
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:2349: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working  if isinstance(obj, collections.Iterator):/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:2366: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working  return list(data) if isinstance(data, collections.MappingView) else data

效果展示

【情人节特辑】:虚拟女友教你如何正确“回答” - 创想鸟

变身!!!

【情人节特辑】:虚拟女友教你如何正确“回答” - 创想鸟

第三步、把真人化输出的照片输入进paddlebobo生成虚拟女友动画

3.1解压压缩包

In [11]

!tar xzvf bobo.tar.gz PaddleBoBo data nltk_data work

3.2安装PaddleGAN和PaddleSpeech依赖

In [ ]

#这一步执行时间会比较久!pip install ppgan paddlespeech

3.3动漫真人化图像生成虚拟女友动画

这一步用到了default.yaml的配置文件,如果你只是尝试的话使用默认配置即可,如果你需要生成另一个人像,请修改default.yaml配置。主要是修改输入照片的位置:PaddleBoBo/default.yaml 里面的FOM_INPUT_IMAGE: ‘/home/aistudio/work/output_01503.png’

In [ ]

%cd PaddleBoBo!python create_virtual_human.py --config default.yaml

第四步、让虚拟女友纠正你的话语

–text 请输入之前生成的编号

In [ ]

!python general_demo.py --human ./file/input/test.mp4 --output ../output.mp4 --text a

效果展示

以上就是【情人节特辑】:虚拟女友教你如何正确“回答”的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/319674.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月5日 09:22:12
下一篇 2025年11月5日 09:23:49

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信